留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地形湍流拖曳力参数化及在GRAPES中的应用

薛海乐 沈学顺 苏勇

薛海乐, 沈学顺, 苏勇. 地形湍流拖曳力参数化及在GRAPES中的应用. 应用气象学报, 2011, 22(2): 169-181..
引用本文: 薛海乐, 沈学顺, 苏勇. 地形湍流拖曳力参数化及在GRAPES中的应用. 应用气象学报, 2011, 22(2): 169-181.
Xue Haile, Shen Xueshun, Su Yong. Parameterization of turbulent orographic form drag and implementation in GRAPES. J Appl Meteor Sci, 2011, 22(2): 169-181.
Citation: Xue Haile, Shen Xueshun, Su Yong. Parameterization of turbulent orographic form drag and implementation in GRAPES. J Appl Meteor Sci, 2011, 22(2): 169-181.

地形湍流拖曳力参数化及在GRAPES中的应用

资助项目: 

国家自然科学基金创新研究群体科学基金 40921003

国际科技合作项目 2008DFA22180

国家自然科学基金面上项目 40675063

国家科技支撑计划项目 2006BAC02802

详细信息
    通信作者:

    沈学顺, E-mail: shenxs@cams.cma.gov.cn

Parameterization of Turbulent Orographic Form Drag and Implementation in GRAPES

  • 摘要: 分辨率的限制使得不能被模式识别的地形称为次网格尺度地形,次网格尺度地形在热力和动力方面对实际大气有着不可忽略的作用,其效应只能通过参数化的形式回馈给模式。分辨率的提高使得与较小尺度地形相联系的地形湍流拖曳力凸显其重要性。数值模式中地形湍流拖曳力的参数化对完善模式物理过程和改善模式近地层预报效果具有积极意义,其方法包括有效粗糙度法和直接参数化法,而GRAPES模式中并未以任何方法考虑次网格尺度地形的影响。该文通过单柱模式比较了有效粗糙度法和直接参数化法的优劣, 发现后者在有些方面优于前者。最后,将应用于实际的一个直接参数化方案接入GRAPES中尺度模式中,进行个例模拟,并与NCEP再分析资料进行对比,结果表明:考虑地形湍流拖曳力方案对模式预报具有改进作用,尤其对局地低层风场具有积极影响。
  • 图  1  有效粗糙度法和直接参数化法 (应用WBH01方案) 对低层气流的作用

    (a) 有效粗糙度随坡度和地面粗糙度的变化,(b) 地表总应力 (被摩擦速度的平方标准化) 随坡度的变化,(c) 模式第1层 (5.5 m) 纬向风随坡度变化,(d) 模式第1层 (5.5 m) 经向风随坡度变化

    Fig. 1  The influence of effective roughness method and directed method (using WBH01 scheme) on the lower layer

    (a) the effective roughness changes with local roughness and slope, (b) the total surface stress (normalized by friction velocity square), (c) the zonal velocity changes of the 1st model level (5.5 m) with slope, (d) the meridional velocity changes of the 1st model level (5.5 m) with slope

    图  2  应力 (a) 和风速 (b) 垂直廓线

    Fig. 2  Momentum flux (a) and velocity (b) profile

    图  3  地形湍流拖曳力直接参数化法对纬向风速 (a)、经向风速 (b) 和纬向应力 (c)、经向应力 (d) 的影响

    Fig. 3  The influence of form drag on zonal velocity (a), meridional velocity (b) and zonal flux (c), meridional flux (d)

    图  4  WBH01方案 (a) 和BBW04方案 (b) 动能倾向诊断

    Fig. 4  The diagnosis of kinetic energy tendency for WBH01 scheme (a) and BBW04 scheme (b)

    图  5  无量纲化地表地形湍流拖曳力随坡度变化

    Fig. 5  The change of the normalized surface form drag with slope

    图  6  试验I2B6地形湍流拖曳力造成的区域平均速度倾向随时间的变化 (每个时次间隔3 h)

    Fig. 6  The change of area average velocity tendency caused by form drag with time in case I2B6 (the time interval is 3 hours)

    图  7  I2B6试验24 h预报场地形湍流拖曳力造成的速度倾向沿30°N垂直剖面图 (阴影),模式面第1层全风速大小 (绿线) 和地形标准偏差 (红线)

    Fig. 7  30°N zonal section of velocity tendency (shaded area) caused by 24-hour prediction form drag, the 1st level wind speed (green line) and orographic standard deviation (red line) in case I2B6

    图  8  风速相对偏差分布 (单位:m·s-1)

    Fig. 8  The relative bias of wind speed (unit:m·s-1)

    图  9  10 m高度纬向风和经向风速考虑与不考虑BBW04方案的均方根误差和偏差

    Fig. 9  RMS error and bias of 10-meter zonal and meridional winds between cases with and without BBW04 scheme

    表  1  个例模拟简明表

    Table  1  Cases concise table

    试验简称 描述 区域 起报时间
    O8B15 外围考虑BBW04方案,0.15°分辨率 15°~65°N,70°~145°E 2008-12-08T00:00
    O8N15 外围不考虑拖曳力方案,0.15°分辨率 15°~65°N,70°~145°E 2008-12-08T00:00
    O2B15 外围考虑BBW04方案,0.15°分辨率 15°~65°N,70°~145°E 2009-08-02T00:00
    O2N15 外围不考虑拖曳力方案,0.15°分辨率 15°~65°N,70°~145°E 2009-08-02T00:00
    I8B6 嵌套,考虑BBW04方案,0.06°分辨率 20°~38°N,92°~113°E 2008-12-08T00:00
    I8N6 嵌套,不考虑拖曳力方案,0.06°分辨率 20°~38°N,92°~113°E 2008-12-08T00:00
    I2B6 嵌套,考虑BBW04方案,0.06°分辨率 20°~38°N,92°~113°E 2009-08-02T00:00
    I2N6 嵌套,不考虑拖曳力方案,0.06°分辨率 20°~38°N,92°~113°E 2009-08-02T00:00
    下载: 导出CSV
  • [1] 叶笃正, 顾震潮.西藏高原对于东亚大气环流及中国天气的影响.科学通报, 1955, 6: 28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB195506006.htm
    [2] 叶笃正.西藏高原对于大气环流影响的季节变化.气象学报, 1952, 23(1):33-47. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB1952Z1001.htm
    [3] 叶笃正.小地形对于气流的影响.气象学报, 1956, 27(3):243-265. doi:  10.11676/qxxb1956.018
    [4] 钱永甫, 颜宏, 王谦谦, 等.行星大气中地形效应的数值模拟.北京:科学出版社, 1988: 217.
    [5] 卢敬华, 陈刚毅.中小地形对局地天气气候的影响.成都气象学院学报, 1989, 8: 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-CDQX198901000.htm
    [6] Davies L A, Brown A R.Assessment of which scales of orography can be credibly resolved in a numerical model. Q J R Meteorol Soc, 2001, 42: 828-841. doi:  10.1002/qj.49712757405/pdf
    [7] Jackson P S, Hunt C R. Turbulent wind flow over a low hill. Quart J Roy Met Soc, 1975, 101: 929-955. doi:  10.1002/(ISSN)1477-870X
    [8] Sykes R I. An asymptotic theory of incompressible turbulent flow over a small hump. J Fuid Mech, 1980, 101: 647-670. doi:  10.1017/S002211208000184X
    [9] Hunt J C R, Leibovich S, Richards K J. Turbulent shear flows over low hills. Q J R Meteorol Soc, 1988 114: 1435-1471. doi:  10.1002/(ISSN)1477-870X
    [10] Belcher S E, Newley T, Hunt J. The drag on an undulating surface induced by the flow of a turbulent boundary layer. J Fluid Mech, 1993, 249: 557-596. doi:  10.1017/S0022112093001296
    [11] Wood N, Mason P. The pressure force induced by neutral, turbulent flow over hills. Quart J Roy Met Soc, 1993, 119: 1233-1267. doi:  10.1002/(ISSN)1477-870X
    [12] Belcher S, Wood N. Form and wave drag due to stably stratified turbulent flow over low ridges. Quart J Roy Met Soc, 1996, 122: 863-902. doi:  10.1002/(ISSN)1477-870X
    [13] Wood N, Brown A R, Hewer F E. Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths. Quart J Roy Met Soc, 2001, 127: 759-777. doi:  10.1002/qj.49712757303/full
    [14] Brown A R, Wood N. Turbulent form drag on anisotropic three-dimensional orography. Bound-Layer Meteor, 2001, 101: 229-241. doi:  10.1023/A:1019251128414
    [15] Brown A R, Wood N. Properties and parameterization of the stable boundary layer over moderate topography. Journal of the Atmospheric Sciences, 2003, 60: 2797-2808. doi:  10.1175/1520-0469(2003)060<2797:PAPOTS>2.0.CO;2
    [16] Allen T, Brown A R. Modeling of turbulent form drag in convective conditions. Bound-Layer Meteor, 2006, 118: 421-429. doi:  10.1007/s10546-005-9002-z
    [17] Mason P. On the Parameterization of the Orographic Drag. Technical Report, Proc. Seminar on Physical Parametrization for Numerical Models of the Atmosphere, ECMWF. 1985: 139-165.
    [18] Taylor P, Sykes R, Mason P. On the parametrization of drag over small-scale topography in neutrally stratifled boundary-layer flow. Bound-Layer Meteor, 1989, 49: 409-422. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF00123062
    [19] Grant A L M, Mason P. Observations of boundary-layer structure over complex terrain. Quart J Roy Met Soc, 1990, 116: 159-186. doi:  10.1002/(ISSN)1477-870X
    [20] Newley T J. Turbulent Airflow over Hills. Cambridge: University of Cambridge, 1985.
    [21] Nappo C J. Mesoscale flow over complex terrain during the Eastern Tennessee Trajectory Experiment (ETTEX). J Appl Meteorol, 1977, 16: 1186-1196. doi:  10.1175/1520-0450(1977)016<1186:MFOCTD>2.0.CO;2
    [22] Thompson R S. Note on the aerodynamic roughness-length for complex terrain. J Appl Meteorol, 1978, 17: 1402-1403. doi:  10.1175/1520-0450(1978)017<1402:NOTARL>2.0.CO;2
    [23] Kustas W P, Brutsaert W. Wind profile constants in a neutral atmospheric boundary layer over complex terrain. Bound-Layer Meteor, 1986, 34: 35-54. doi:  10.1007/BF00120907
    [24] Hopwood W P. Radiosonde observation of boundary layer characteristics over two types of complex terrain. Annales Geophysicae, 1991, 9: 224-225.
    [25] Rontu L. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus, 2006, 58: 68-81. doi:  10.1111/j.1600-0870.2006.00162.x/citedby
    [26] Beljaars A C M, Brown A R, Wood N. A new parameterization of turbulent orographic form drag. Q J R Meteoro Soc, 2004, 130: 1327-1347. doi:  10.1256/qj.03.73
    [27] Hobson J M, Wood N, Brown A R. Large-eddy simulations of neutrally steratified flow over surfaces with spatially varying roughness length. Q J R Neteorol Soc, 1999, 124: 1937-1958. doi:  10.1002/qj.49712555803/full
    [28] Yamada T, Mellor G. A simulation of the Wangara atmospheric boundary layer data. Journal of the Atmospheric Sciences, 1975, 32: 2309-2329. doi:  10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2
    [29] 胡江林, 沈学顺, 张红亮, 等. GRAPES模式动力框架的长期积分特征.应用气象学报, 2007, 18(3): 276-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070349&flag=1
    [30] 陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2007, 17(6): 773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [31] 伍湘君, 金之雁, 黄丽萍, 等. GRAPES模式软件框架与实现.应用气象学报, 2005, 16(4):539-546. doi:  10.11898/1001-7313.20050415
    [32] 孙晶, 楼小凤, 胡志晋, 等. CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 19(3):315-325. doi:  10.11898/1001-7313.20080307
    [33] 陈峰峰, 王光辉, 沈学顺, 等. Cascade插值方法在GRAPES模式中的应用.应用气象学报, 2009, 20(2):164-170. doi:  10.11898/1001-7313.20090205
  • 加载中
图(9) / 表(1)
计量
  • 摘要浏览量:  3860
  • HTML全文浏览量:  999
  • PDF下载量:  1495
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-07
  • 修回日期:  2010-10-18
  • 刊出日期:  2011-04-30

目录

    /

    返回文章
    返回