Precipitation Characteristics in Tropical Cyclone Katrina Using TRMM Precipitation Radar
-
摘要: 利用TRMM (Tropical Rainfall Measuring Mission) 卫星降水雷达 (Precipitation Radar,PR) 资料对2005年8月发生在墨西哥湾的热带气旋卡特里娜 (Katrina) 初生、发展和变性3个阶段的层状云和对流云的近地面降水和降水垂直廓线进行分析。结果表明:在热带气旋的整个生命期,对流性降水个数约是层状云降水个数的四分之一;随着气旋的发展,对流性和层状云降水的平均强度逐渐增强, 在登陆前有所减弱,登陆后对流性降水和总平均降水均增强,层状云降水稍有减弱;大部分降水廓线都随高度升高均呈现先略增大 (到4 km高度)、再减小的趋势,在6~7 km处由于冻结层的存在使得降水达到最小值。Abstract: Tropical cyclone is a primary disastrous synoptic system in China. Its monitoring mainly depends on optical data, i.e., visible and infrared data. These sensors observe the albedo and temperature of cloud top which is somewhat related with the precipitation, but leave the precipitation particles inside the precipitation-cloud system unseen. Fortunately, the microwave sensor can penetrate into the cloud and sense precipitation particles in and even below the cloud system, and observe precipitation more directly.Based on TRMM PR (Precipitation Radar) product, 6 orbit data in four days covering the main part of the cyclone are analyzed to study the characteristics of near-surface precipitation and vertical precipitation profile of stratiform and convective cloud in nascent, developing, and recessionary stages of the cyclone Katrina. Results indicate that the convective rain percent is 15%—22% and stratiform rain occupies 78%—85%. The average stratiform rain rate is 2.7—5.9 mm·h-1, the convective rain rate is 7.7—17.5 mm·h-1, and the total rain rate is 3.5—7.7 mm·h-1. During the life cycle of the cyclone, the pixel number with convective rain is one fourth of stratiform one's, while the average intensity/rain rate of convective rain is four times of stratiform rain. The average rain rates of convective and stratiform precipitation gets larger along with the developing of cyclone, gets a little weaker just before landing, and enhances after landing except that stratiform rain become a little weaker.During nascent stage, weak precipitation of 1—2 mm·h-1 is dominant, and there are no pixels with rain rate larger than 31 mm·h-1. During developing stages, the rain rate intensifies. More rain pixels appear, some with very high rain intensity. After landing, because of the strong friction effects with land surface, the proportion of pixels with rain rate between 5—10 mm·h-1 increases, and the pixel number with rain is almost doubled except the ones between 30—50 mm·h-1 becoming a little less.During the nascent and recessionary stages, the max precipitation height is 10 km. During the developing stages, it reaches as high as 16 km. Most precipitation profiles vary first larger (to 4 km) then smaller with height, and reach minimum at 6—7 km because of the freezing level. The profiles of nascent and recessionary stages diminish equably with height. The profiles of developing stages vary very uneven with height because of the violent upwelling airflow in cyclone. The analyses on TRMM data provide a perception to precipitation type, horizontal distribution, and intensity of data-sparse oceanic tropical cyclone where conventional radiosonde measurements are not available. These results are useful information for future quantificational precipitation retrieval of cyclone.
-
Key words:
- TRMM;
- precipitation radar;
- tropical cyclone;
- Katrina;
- precipitation
-
图 1 TRMM/TMI 85 GHz的亮温图像 (1B11产品)
(a)2005年8月25日降轨,(b)2005年8月27日降轨,(c)2005年8月27日升轨,(d)2005年8月28日降轨,(e)2005年8月29日降轨,(f)2005年8月29日升轨
Fig. 1 TRMM/TMI brightness temperature images at 85 GHz channel
(a) descending orbit on 25 Aug 2005, (b) descending orbit on 27 Aug 2005, (c) ascending orbit on 27 Aug 2005, (d) descending orbit on 28 Aug 2005, (e) descending orbit on 29 Aug 2005, (f) ascending orbit on 29 Aug 2005
图 2 TRMM/PR 2 km高度降水强度图像 (2A25产品)
(a)2005年8月25日降轨,(b)2005年8月27日降轨,(c)2005年8月27日升轨,(d)2005年8月28日降轨,(e)2005年8月29日降轨,(f)2005年8月29日升轨
Fig. 2 TRMM/PR 2-kilometer rain intensity images (2A25 product)
(a) descending orbit on 25 Aug 2005, (b) descending orbit on 27 Aug 2005, (c) ascending orbit on 27 Aug 2005, (d) descending orbit on 28 Aug 2005, (e) descending orbit on 29 Aug 2005, (f) ascending orbit on 29 Aug 2005
表 1 2005年热带气旋卡特里娜影响区域层状云和对流性降水特征
Table 1 Features of stratiform and convective rainfall over the area impacted by tropical cyclone Katriana in 2005
参数 08-25降轨 08-27降轨 08-27升轨 08-28降轨 08-29降轨 08-29升轨 PnStr/% 84.42 81.04 77.85 84.47 84.85 81.16 PnCov/% 15.58 18.96 22.15 15.53 15.15 18.84 PiStr/% 65.34 53.21 45.71 64.54 65.76 52.64 PiCov/% 34.66 46.79 54.29 35.46 34.24 47.36 IStrAvg/(mm·h-1) 2.67 2.67 3.16 5.86 4.97 4.58 ICovAvg/(mm·h-1) 7.68 10.04 13.2 17.49 14.49 17.74 IAvgAll/(mm·h-1) 3.45 4.07 5.39 7.66 6.42 7.06 -
[1] 卢乃锰, 游然. 卫星遥感中尺度暴雨的原理与应用//暴雨系统的遥感理论和方法. 北京: 气象出版社, 2004: 175-206. [2] Liu Guosheng. Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J Atmos Sci, 2004, 61: 2441-2456. doi: 10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2 [3] Kummerow C, Olson W S, Giglio L. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1213-1232. doi: 10.1109/36.536538 [4] Kummerow C, Barnes W. The tropical rainfall measuring mission (TRMM) sensor package. J Atmos and Oceanic Tech, 1998, 15(3): 809-817. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2 [5] Kawanishi T, Kuroiwa H, Kojima M, et al. TRMM precipitation radar. Adv Space Res, 2000, 25(5): 969-972. doi: 10.1016/S0273-1177(99)00932-1 [6] Iguchi T, Meneghini R, Awaka J, et al. Rain profiling algorithm for TRMM precipitation radar data. Adv Space Res, 2000, 25(5): 973-976. doi: 10.1016/S0273-1177(99)00933-3 [7] Haddad Z S, Smith E A, Kummerow C D, et al. The TRMM 'Day-1' radar/radiometer combined rain-profiling algorithm. J Meteor Soc Japan, 1997, 75(4): 799-809. doi: 10.2151/jmsj1965.75.4_799 [8] 傅云飞, 刘栋, 王雨, 等.热带测雨卫星综合探测结果之"云娜"台风降水云与非降水云特征.气象学报, 2007, 65(3): 316-328. doi: 10.11676/qxxb2007.031 [9] 刘黎平, 葛润生.中国气象科学研究院雷达气象研究50年.应用气象学报, 2006, 17(6): 682-689. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606117&flag=1 [10] 葛润生, 朱晓燕, 姜海燕.提高多普勒天气雷达晴空探测能力的一种方法.应用气象学报, 2000, 11(3): 257-263. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000340&flag=1 [11] 梁海河, 阮征, 葛润生.华南暴雨试验天气雷达数据处理及暴雨中尺度结构个例分析.应用气象学报, 2004, 15(3): 281-290. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040337&flag=1 [12] 傅云飞, 宇如聪, 徐幼平, 等. TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究.气象学报, 2003, 61(4): 421-431. doi: 10.11676/qxxb2003.041 [13] 傅云飞, 宇如聪, 崔春光, 等.基于热带测雨卫星探测的东亚降水云结构特征的研究.暴雨灾害, 2007, 26(1): 9-20. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200701004.htm [14] 李锐, 傅云飞, 赵萍.利用热带测雨卫星的测雨雷达对1997/1998年El Nino后期热带太平洋降水结构的研究.大气科学, 2005, 29(2): 225-235. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200400002003.htm [15] 程明虎, 刘黎平, 张沛源, 等.暴雨系统的多普勒雷达反演理论和方法.北京:气象出版社, 2004:147-188. [16] 李万彪, 陈勇, 朱元竞, 等.利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水.气象学报, 2001, 59(5): 591-601. doi: 10.11676/qxxb2001.063 [17] 何文英, 陈洪滨. TRMM卫星对一次冰雹降水过程的观测分析研究.气象学报, 2006, 64(3): 364-377. doi: 10.11676/qxxb2006.035 [18] 吴庆梅, 程明虎, 苗春生.用TRMM资料研究江淮、华南降水的微波特性.应用气象学报, 2003, 14(2): 206-214. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030225&flag=1 [19] 毛冬艳, 程明虎.用TRMM资料研究1999年Sam台风.气象科技, 2001, 29(2): 37-40. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200102005.htm [20] Jin Xin, Li Wanbiao, Zhu Yuanjing. A study on the Meiyu front using TRMM/PR data during the 1998 GAME/HUBEX. Adv Atmos Sci, 2003, 20(2): 293-298. doi: 10.1007/s00376-003-0015-6 [21] 魏应植, 汤达章, 许健民, 等.多普勒雷达探测"艾利"台风风场不对称结构.应用气象学报, 2007, 18(3): 285-294. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070350&flag=1 [22] 朱龙彪, 郑铮, 何彩芬. 0414号台风"云娜"多普勒雷达探测.应用气象学报, 2005, 16(4): 500-508. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050463&flag=1