留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同卫星遥感干旱指数在黑龙江的对比应用

于敏 王春丽

于敏, 王春丽. 不同卫星遥感干旱指数在黑龙江的对比应用. 应用气象学报, 2011, 22(2): 221-231..
引用本文: 于敏, 王春丽. 不同卫星遥感干旱指数在黑龙江的对比应用. 应用气象学报, 2011, 22(2): 221-231.
Yu Min, Wang Chunli. Satellite remote sensing drought monitoring methods based on different biophysical indicators. J Appl Meteor Sci, 2011, 22(2): 221-231.
Citation: Yu Min, Wang Chunli. Satellite remote sensing drought monitoring methods based on different biophysical indicators. J Appl Meteor Sci, 2011, 22(2): 221-231.

不同卫星遥感干旱指数在黑龙江的对比应用

详细信息
    通信作者:

    于敏, E-mail: yy629@sina.com

Satellite Remote Sensing Drought Monitoring Methods Based on Different Biophysical Indicators

  • 摘要: 采用MODIS的1 km×1 km分辨率数据,以我国黑龙江为研究区,对基于植被指数的植被状态指数 (IVC)、基于地表温度的温度状态指数 (ITC) 和基于植被指数-地表温度特征空间的植被温度状态指数 (IVTC) 与10 cm,20 cm土壤相对湿度、降水量的关系、3种指数监测结果及其相互关系进行了对比分析。结果表明:IVTC相对于ITCIVC更适于反映土壤湿度的变化,对浅层土壤湿度更加敏感;IVTC相对于ITCIVC对降水更敏感,与监测时段的降水和前期总体降水都密切相关;在生长季早期,IVTCITC用于干旱监测的适用性明显优于IVC;不同区域间,IVTC的可比性较好,IVCITC则较差;IVTC所反映的地表温度信息对干旱的直接指示作用最强,所反映的植被信息对干旱的直接指示作用较弱。
  • 图  1  IVTC定义示意图[27, 30]

    Fig. 1  The definition of IVTC[27, 30]

    图  2  2004年129时段IVC(a), ITC(b), IVTC(c) 的空间分布 (边界内白色区域为水体或无效数据)

    Fig. 2  The spatial distribution of IVC(a), ITC(b), IVTC (c) in the period 129 in 2004 (the white area is the water or the invalid value)

    图  3  2004年145时段IVC(a), ITC(b), IVTC(c) 的空间分布 (边界内白色区域为水体或无效数据)

    Fig. 3  The spatial distribution of IVC(a), ITC(b), IVTC(c) in the period 145 in 2004 (the white area is the water or the invalid value)

    图  4  2004年129时段IVC, ITC, IVTC的关系散点图 (R为相关系数)

    (a) 整个地表, (b) 森林, (c) 农田, (d) 草原草甸, (e) 灌丛

    Fig. 4  The scatters plot of IVC, ITC, IVTC in the period 129 in 2004 (R is the correlation coefficent)

    (a) the whole study area, (b) forest, (c) crop, (d) grass, (e) shrub

    图  5  2004年145时段IVC, ITC, IVTC的关系散点图 (R为相关系数)

    (a) 整个地表, (b) 森林, (c) 农田, (d) 草原草甸, (e) 灌丛

    Fig. 5  The scatters plot of IVC, ITC, IVTC in the period 145 in 2004 (R is the correlation coefficent)

    (a) the whole study area, (b) forest, (c) crop, (d) grass, (e) shrub

    表  1  129时段ITCIVCIVTC与土壤相对湿度的相关系数

    Table  1  The correlation between ITC, IVC, IVTC and soil relative moisture in the period 129

    年份
    (样本数)
    指数 10 cm土壤相对湿度 20 cm土壤相对湿度
    2000
    (49)
    ITC 0.149 0.203
    IVC 0.238* 0.111
    IVTC 0.290*** 0.170
    2001
    (61)
    ITC -0.051 -0.048
    IVC 0.185 0.178
    IVTC 0.257** 0.210
    2002
    (62)
    ITC 0.049 0.129
    IVC -0.040* -0.101
    IVTC 0.139 0.177
    2003
    (67)
    ITC -0.039 -0.165
    IVC -0.081 -0.107
    IVTC 0.222* 0.169
    2004
    (68)
    ITC 0.129 0.084
    IVC 0.002 -0.098
    IVTC 0.386**** 0.338***
    2005
    (66)
    ITC 0.300*** 0.194*
    IVC -0.101 -0.160
    IVTC 0.330*** 0.248**
    2006
    (64)
    ITC -0.166 -0.021
    IVC 0.220* 0.022
    IVTC 0.279** 0.241**
    2007
    (69)
    ITC -0.217 -0.176
    IVC 0.055 0.021
    IVTC 0.283** 0.253*
    2008
    (71)
    ITC 0.461***** 0.398****
    IVC -0.084 -0.015
    IVTC 0.467***** 0.430*****
     注:*****,****,***,**,*分别代表相关性通过0.001,0.01,0.02,0.05,0.1的显著性检验。
    下载: 导出CSV

    表  2  145时段ITCIVCIVTC与土壤相对湿度的相关系数

    Table  2  The correlation between ITC, IVC, IVTC and soil relative moisture in the period 145

    年份
    (样本数)
    指数 10 cm土壤相对湿度 20 cm土壤相对湿度
    2000
    (43)
    ITC 0.305** 0.165
    IVC -0.302 0.144
    IVTC 0.435**** 0.294**
    2001
    (65)
    ITC 0.233** 0.037
    IVC 0.109 0.037
    IVTC 0.264** 0.189
    2002
    (60)
    ITC 0.132 0.119
    IVC 0.232 0.298
    IVTC 0.323** 0.319**
    2003
    (67)
    ITC 0.087 -0.165
    IVC -0.082 0.011
    IVTC 0.251** 0.160
    2004
    (68)
    ITC 0.198* 0.191
    IVC 0.213* 0.198*
    IVTC 0.366**** 0.292***
    2005
    (61)
    ITC 0.064 -0.045
    IVC -0.233 -0.160
    IVTC 0.292 0.111
    2006
    (72)
    ITC 0.037 -0.089
    IVC 0.093 0.022
    IVTC 0.117 0.175
    2007
    (70)
    ITC 0.099 0.148
    IVC -0.235 0.021
    IVTC 0.451***** 0.432*****
    2008
    (71)
    ITC 0.072 0.024
    IVC 0.353***** 0.354*****
    IVTC 0.306**** 0.331****
     注:*****,****,***,**,*分别代表相关性通过0.001,0.01,0.02,0.05,0.1的显著性检验。
    下载: 导出CSV

    表  3  129时段ITC, IVC, IVTC与降水量的相关系数

    Table  3  The correlation between ITC, IVC, IVTC and precipitation in the period 129

    年份 指数 超前时段
    0 1 2 3 4
    2000 ITC 0.336 0.394 0.460 0.430 0.439
    IVC 0.179 0.206 0.181 0.180 0.151
    IVTC 0.504 0.551 0.539 0.568 0.568
    2001 ITC 0.256 0.160 0.130 0.095 0.079
    IVC 0.117 0.302 0.299 0.265 0.261
    IVTC 0.495 0.428 0.398 0.437 0.433
    2002 ITC 0.234 0.176 0.166 0.366 0.322
    IVC 0.346 0.296 0.528 0.487 0.481
    IVTC 0.246 0.258 0.343 0.181 0.228
    2003 ITC 0.229 0.200 0.141 0.089 0.116
    IVC 0.100 0.044 -0.060 -0.080 -0.090
    IVTC 0.165 0.232 0.231 0.213 0.213
    2004 ITC -0.090 0.039 0.028 0.050 0.068
    IVC -0.157 -0.095 -0.111 -0.139 -0.142
    IVTC 0.320 0.427 0.443 0.498 0.501
    2005 ITC 0.603 0.582 0.523 0.548 0.527
    IVC -0.022 -0.066 -0.035 -0.011 -0.002
    IVTC 0.679 0.536 0.474 0.493 0.495
    2006 ITC 0.125 0.125 0.062 0.032 0.030
    IVC 0.149 0.295 0.278 0.263 0.256
    IVTC 0.361 0.349 0.368 0.382 0.381
    2007 ITC 0.160 0.059 0.185 0.189 0.200
    IVC -0.010 0.055 0.071 0.112 0.095
    IVTC 0.239 0.277 0.081 0.011 -0.016
    2008 ITC 0.375 0.580 0.564 0.565 0.541
    IVC -0.200 -0.169 -0.128 -0.103 -0.115
    IVTC 0.371 0.501 0.465 0.432 0.432
    下载: 导出CSV

    表  4  145时段ITCIVCIVTC与降水量的相关系数

    Table  4  The correlation between ITC, IVC, IVTC and precipitation in the period 145

    年份 指数 超前时段
    0 1 2 3 4
    2000 ITC 0.202 0.430 0.432 0.375 0.400
    IVC -0.381 -0.292 -0.265 -0.249 -0.272
    IVTC 0.375 0.629 0.622 0.617 0.622
    2001 ITC 0.276 0.334 0.389 0.387 0.430
    IVC 0.285 0.340 0.417 0.384 0.360
    IVTC 0.480 0.594 0.546 0.514 0.508
    2002 ITC 0.125 0.162 0.189 0.152 0.087
    IVC 0.130 0.126 0.151 0.159 0.175
    IVTC 0.288 0.271 0.342 0.307 0.190
    2003 ITC 0.091 0.141 0.157 0.213 0.255
    IVC -0.023 -0.077 -0.100 -0.166 -0.180
    IVTC 0.174 0.209 0.259 0.329 0.375
    2004 ITC 0.326 0.462 0.444 0.481 0.503
    IVC 0.214 0.384 0.308 0.280 0.313
    IVTC 0.549 0.628 0.642 0.690 0.673
    2005 ITC 0.643 0.529 0.454 0.420 0.403
    IVC 0.204 0.197 0.242 0.209 0.213
    IVTC 0.464 0.412 0.372 0.339 0.337
    2006 ITC 0.118 0.086 0.006 0.028 -0.010
    IVC -0.110 -0.090 0.004 0.002 0.027
    IVTC 0.006 0.154 0.255 0.273 0.267
    2007 ITC 0.100 0.263 0.229 0.267 0.266
    IVC -0.163 -0.112 -0.110 -0.068 -0.108
    IVTC 0.503 0.577 0.568 0.507 0.489
    2008 ITC -0.263 -0.227 -0.063 -0.055 -0.026
    IVC -0.100 -0.020 0.112 0.104 0.075
    IVTC 0.137 0.220 0.308 0.316 0.326
    下载: 导出CSV
  • [1] 马柱国.我国北方干湿演变规律及其与区域增暖的可能联系.地球物理学报, 2005, 48(5):1011-1018. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200505005.htm
    [2] 邹旭恺, 张强.近半个世纪我国干旱变化的初步研究.应用气象学报, 2008, 19(6): 679-686. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080607&flag=1
    [3] 卫捷, 张庆云, 陶诗言.近20年华北地区干旱期大气环流异常特征.应用气象学报, 2003, 14(2):140-151. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030219&flag=1
    [4] 王志伟, 翟盘茂.中国北方近50年干旱变化特征.地理学报, 2003, 58(增刊):61-68. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1006.htm
    [5] Townshend J R G, Justice C O. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens, 1986, 7: 1555-1570. doi:  10.1080/01431168608948953
    [6] Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens, 1986, 7:1395-1416. doi:  10.1080/01431168608948944
    [7] Gutman G G. Review of the workshop on the use of satellite derived vegetation indices in weather and climate prediction model. Bull Amer Meteor Soc, 1990, 71: 1458-1463. http://lcluc.umd.edu/documents/gutman-g-1990-review-workshop-use-satellitederived-vegetation-indices-weather-and-climate
    [8] Guttman N B. Accepting the standardized precipitation index: A calculation algorithm. Journal of the American Water Resources Association, 1999, 35: 311-322. doi:  10.1111/jawr.1999.35.issue-2
    [9] Goward S N, Dye D G, Turner S, et al. Objective assessment of the NOAA global vegetation index data product. Int J Remote Sens, 1993, 14: 3365-3394. doi:  10.1080/01431169308904453
    [10] Philippon N, Jarlan L, Martiny N, et al. Characterization of the interannual and intraseasonal variability of west African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. J Climate, 2007, 20(4): 1202-1218. http://www.academia.edu/12648012/Characterization_of_the_Interannual_and_Intraseasonal_Variability_of_West_African_Vegetation_between_1982_and_2002_by_Means_of_NOAA_AVHRR_NDVI_Data
    [11] 王开存, 陈长和, 郭铌.用NOAA/AVHRR探测地表反射率和NDVI的订正及误差分析.应用气象学报, 2003, 14(2):165-175. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030221&flag=1
    [12] 陈燕丽, 龙步菊, 潘学标, 等.基于MODIS NDVI和气候信息的草原植被变化监测.应用气象学报, 2010, 21(2):229-236. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100213&flag=1
    [13] 王晓云, 郭文利, 奚文, 等.利用"3S"技术进行北京地区土壤水分监测应用技术研究.应用气象学报, 2002, 13(4):422-429. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020457&flag=1
    [14] Mcvicar T R, Jupp D L B, Yang X, et al. Linking Regional Water Balance Models with Remote Sensing//Proceedings of the 13th Asian Conference on Remote Sensing. Ulaanbaatar, Mongolia, 1992:B6.1-6.6.
    [15] McVicar T R, Bierwirth P N. Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. Int J Remote Sens, 2000, 22: 2109-2128. doi:  10.1080/01431160120728
    [16] Jupp D L. Directional radiance and emissivity measurement models for remote sensing of the surface energy balance. Environmental Modelling & Software, 1998, 3: 341-351. http://www.sciencedirect.com/science/article/pii/S1364815298000395
    [17] Bayarjargal Y, Karnieli A, Bayasgalan M, et al. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sens Environ, 2006, 105(1):9-22. doi:  10.1016/j.rse.2006.06.003
    [18] 金一谔, 刘长盛, 张文忠.利用气象卫星GMS和AVHRR资料推算地面水份含量的方法.应用气象学报, 1998, 9(2):197-204. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980227&flag=1
    [19] Price J C. Using spatial context in satellite data to infer regional scale vapotranspiration. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28: 940-948. doi:  10.1109/36.58983
    [20] Carlson T N, Gillies R R, Perry E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 1994, 9: 161-173. doi:  10.1080/02757259409532220
    [21] Moran M S, Clarke T R, Inoue Y, et al. Crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ, 1994, 49:246-263. doi:  10.1016/0034-4257(94)90020-5
    [22] Kogan F N. Remote sensing of weather impacts on vegetation in nonhomogeneous areas. Int J Remote Sens, 1990, 11: 405-1419. doi:  10.1080/01431169008955102
    [23] Kogan F N, Sullivan J. Development of global drought-watch system using NOAA/AVHRR data. Advances in Space Research, 1993, 13: 219-222. doi:  10.1016/0273-1177(93)90548-P
    [24] Kogan F N. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 1995, 15: 91-100. http://www.sciencedirect.com/science/article/pii/027311779500079T
    [25] Kogan F N. Global drought watch from space. Bull Amer Meteor Soc, 1997, 78:727-636. doi:  10.1175/1520-0477%281997%29078<0621%3AGDWFS>2.0.CO%3B2
    [26] 于敏, 程明虎.基于NDVI-Ts特征空间的黑龙江省干旱监测.应用气象学报, 2010, 21(2): 221-228. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100212&flag=1
    [27] 孙丞虎, 李维京, 张祖强, 等.淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究.应用气象学报, 2005, 16(2):130-138. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050217&flag=1
    [28] 李巧萍, 丁一汇, 董文杰.壤湿度异常对区域短期气候影响的数值模拟试验.应用气象学报, 2007, 18(1):1-10. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070102&flag=1
    [29] 侯英雨, 何延波, 柳钦火, 等.干旱监测指数研究.生态学杂志, 2007, 26(6): 892-897. http://cdmd.cnki.com.cn/Article/CDMD-10635-1015337610.htm
    [30] Monteith J L. Principles of Environmental Physics. Arnold, London, 1973.
    [31] Gillies R R, Carlson T N, Cui J, et al. A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurement of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Inter J Remote Sens, 1997, 18: 3145-3166. doi:  10.1080/014311697217026
    [32] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ, 2002, 79:213-224. doi:  10.1016/S0034-4257(01)00274-7
    [33] Goetz S J. Muti-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Inter J Remote Sens, 1997, 18(1): 71-94. doi:  10.1080/014311697219286
    [34] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J Applied Meteor, 1989, 28:276-283. doi:  10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
    [35] 王鹏新, 龚健雅, 李小文, 等.基于植被指数和土地表面温度的干旱监测模型.地球科学进展, 2003, 18(4):527-533. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200304008.htm
    [36] 于敏, 高玉中, 张洪玲.地表温度-植被指数特征空间干旱监测方法的改进.农业工程学报, 2010, 26(9):243-250. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105015.htm
  • 加载中
图(5) / 表(4)
计量
  • 摘要浏览量:  4279
  • HTML全文浏览量:  891
  • PDF下载量:  1217
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-31
  • 修回日期:  2010-12-24
  • 刊出日期:  2011-04-30

目录

    /

    返回文章
    返回