Typhoon Processes Making Landfall in China from 2000 to 2007
-
摘要: 利用TRMM卫星LIS, PR和TMI资料,对2000—2007年41个登陆我国的台风中闪电活动和降水特征进行分析。结果表明:台风中的闪电活动整体较弱,相对而言,外雨带中的闪电活动最强,其次是眼壁,内雨带最弱,而眼壁的闪电密度最大。闪电活动沿台风径向有两个明显的高值区,主峰出现在距台风眼375 km的外雨带,次峰出现在距台风眼55 km的眼壁和内雨带相交的边界附近。台风中对流云降水面积远小于层云降水面积,其中外雨带中的对流云降水面积最大,其次是眼壁,内雨带最小;但对流降水对总降水量的贡献与层云相当。眼壁和内雨带中的对流云和层云的降水回波平均高度都小于外雨带。分析表明:TMI观测到的85.5 GHz极化修正亮温 (TPC85.5) 越低,闪电发生概率越大,外雨带具有最低的TPC85.5。有、无闪电发生区域的平均6 km高度雷达反射率因子和TPC85.5差异明显。台风区域内,闪电活动位置对应的平均6 km雷达回波强度普遍大于20 dBZ,而无闪电发生位置普遍低于30 dBZ。Abstract: Based on the data of LIS, PR and TMI of TRMM satellite, the characteristics of lightning activities and precipitation in 41 typhoon processes making landfall in China from 2000 to 2007 are analyzed. The lightning activities in typhoons are found to be relatively weak compared with other convective weather systems. The lightning activity in outer rain band is the strongest and that in inner rain band is the weakest. Corresponding to these three regions, the average lightning frequencies are 16.05, 5.04 fl·min-1 and 2.72 fl·min-1 and the average lightning densities are 0.023, 0.029 fl·km-2·min-1 and 0.005 fl·km-2·min-1, respectively. The lightning activity in eyewall converged more than those in other two regions. Two peak values are found along the radial direction of typhoon. The main peak located in the outer rain band, 375 km away from the center of typhoon. The second peak is near to the common boundary of eyewall and inner rain band with the distance to the center of typhoon being 55 km. It is also found that the area of convective precipitation is far smaller than that of stratiform precipitation. However, the convective precipitation amount is basically equivalent to the stratiform precipitation. The average convective precipitation intensities in eyewall, inner rain band and outer rain band are 7.7, 26.3 mm·h-1 and 42.6 mm·h-1, respectively. The corresponding values of stratiform precipitation intensities are 5.2, 8.3 mm·h-1 and 11.2 mm·h-1, respectively. The average heights of precipitation echo of convective cloud and stratiform cloud are 8 km and 7 km respectively in eyewall and inner rainband and 11 km and 9 km respectively in outer rain band. The lower the polarization corrected temperature of 85.5 GHz (TPC85.5) is, the higher occurrence probability of lightning there are. The lowest TPC85.5 is found in outer rain band. The differences of the reflectivity at 6 km level and TPC85.5 are obvious between the regions with lightning activity and the regions without lightning activity. In eyewall, the average TPC85.5 is smaller than 210 K. They are smaller than 220 K and 200 K in inner rain band and outer rain band, respectively. The reflectivity values at 6 km level in the regions with lightning activity are universally larger than 20 dBZ and those in the regions without lightning activity are universally smaller than 30 dBZ.
-
Key words:
- typhoon;
- TRMM satellite;
- lightning;
- precipitation
-
表 1 PR观测的台风3个区域 (眼壁、内雨带、外雨带) 的降水特征
Table 1 Precipitation characteristics in three areas (eyewall, inner rainband, outer rainband) of typhoon processes observed by PR
区域 总点数 层云降
水面积
比例/%对流云
降水面积
比例/%平均层云
降水强度/
(mm·h-1)平均对流云
降水强度
/(mm·h-1)层云降
水量
比例/%对流云
降水量
比例/%层云降水
平均回波
高度/km对流云降水
平均回波
高度/km眼壁 11128 60.3 19.3 5.2 7.7 53.3 46.7 7.1 8.4 内雨带 8940 65.0 13.9 8.3 26.3 51.8 48.2 6.7 8.5 外雨带 296835 54.1 26.4 11.2 42.6 48.6 51.4 8.8 10.9 -
[1] 陈联寿, 丁一汇.西北太平洋台风概论.北京:科学出版社, 1979. [2] 陈联寿, 孟智勇.我国热带气旋研究十年进展.大气科学, 2001, 25(3): 420-432. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200103012.htm [3] 陈联寿.热带气旋研究和业务预报技术的发展.应用气象学报, 2006, 17(6):672-681. doi: 10.11898/1001-7313.20060605 [4] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi: 10.11898/1001-7313.20060619 [5] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi: 10.11898/1001-7313.20060504 [6] 戴建华, 秦虹, 郑杰.用TRMM/LIS资料分析长江三角洲地区的闪电活动.应用气象学报, 2005, 16(6):728-736. doi: 10.11898/1001-7313.20050613 [7] Jorgensen D P, Zipser E J, LeMone M A. Vertical motions in intense hurricanes. J Atmos Sci, 1985, 42: 839-856. doi: 10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2 [8] Black R A, Hallett J. Observations of the distribution of ice in hurricanes. J Atmos Sci, 1986, 43: 802-822. doi: 10.1175/1520-0469(1986)043<0802:OOTDOI>2.0.CO;2 [9] Samsury C E, Orville R E. Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon Wea Rev, 1994, 122: 1887-1896. doi: 10.1175/1520-0493(1994)122<1887:CTGLIT>2.0.CO;2 [10] Lascody R A. A different look at Hurricane Andrew—Lightning around the eyewall. Natl Wea Dig, 1992, 17: 39-40. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.2806&rep=rep1&type=pdf [11] Molinari J, Moore P K, Idone V P, et al. Cloud-to-ground lightning in Hurricane Andrew. J Geophys Res, 1994, 99: 16665-16676. doi: 10.1029/94JD00722 [12] Molinari J, Moore P, Idone V. Convective structure of hurricanes as revealed by lightning locations. Mon Wea Rev, 1999, 127: 520-534. doi: 10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2 [13] Cecil D J, Zipser E J. Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon Wea Rev, 1999, 127:103-123. doi: 10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2 [14] Cecil D J, Zipser E J, Nesbitt S W. Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part Ⅰ: Quantitative description. Mon Wea Rev, 2002, 130:769-784. doi: 10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2 [15] Qie X, Toumi R, Yuan T. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J Geophys Res, 2003, 108 (D17), 4551, 10.1029 /2002JD003304. doi: 10.1029/2002JD003304 [16] 马明, 陶善昌, 祝宝友, 等. 1997/1998 El Nio期间中国南部闪电活动的异常特征.中国科学 (D辑), 2004, 34(9): 873-881. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2004&filename=JDXK200409009&v=MDk4MThNMUZyQ1VSTDJmWXVkcUZpRGtVYi9MTHluVFpiRzRIdFhNcG85RmJZUjhlWDFMdXhZUzdEaDFUM3FUclc= [17] Boccippio D J. Lightning scaling relations revisited. J Atmos Sci, 2002, 59:1086-1104. doi: 10.1175/1520-0469(2002)059<1086:LSRR>2.0.CO;2 [18] Christian H J, Blakeslee R J, Goodman G J, et al. Algorithm theoretical basis document (ATBD) for the lightning imaging sensor (LIS). http ://eospso. gsfc. nasa. gov/ atbd/lisables. html, Posted: 1 Feb 2000. (NASA/ Marshall Space Flight Center, AL 35812). [19] Kummerow C. Beam filling errors in passive microwave rainfall retrievals. J Appl Meteor, 1998, 37: 356-369. doi: 10.1175/1520-0450(1998)037<0356:BEIPMR>2.0.CO;2 [20] Spencer R W, Goodman H M, Hood R E. Precipitation retrieval over land and ocean with the SSM/Ⅰ: Identification and characteristics of the scattering signal. J Atmos Oceanic Technol, 1989, 6: 254-273. doi: 10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2 [21] Molinari J, Moore P, Idone V. Convective structure of hurricanes as revealedby lightning locations. Mon Wea Rev, 1999, 127: 520-534. doi: 10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2 [22] 冯桂力, 郄秀书, 袁铁, 等.雹暴的闪电活动特征与降水结构研究.中国科学 (D辑), 2007, 37(1): 123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701013.htm [23] 郑媛媛, 傅云飞, 刘勇, 等.热带降水测量卫星对淮河一次暴雨降水结构与闪电活动的观测分析研究.气象学报, 2004, 62 (6): 790-802. doi: 10.11676/qxxb2004.075 [24] 郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi: 10.11898/1001-7313.20100304 [25] Deeter M N, Evans K F. A novel ice-cloud retrieval algorithm based on the Millimeter-wave Imaging Radiometer (MIR) 150-and 220-GHz channels. J Appl Meteor, 2000, 39: 623-633. doi: 10.1175/1520-0450-39.5.623 [26] Toracinta E R, Mohr K I, Zipser E J, et al. A comparison of WSR-88D reflectivities, SSM/Ⅰ brightness temperatures, and lightning for mesoscale convective systems in Texas. Part Ⅰ: Radar reflectivity and lightning. J Appl Meteor, 1996, 35(6): 902-918. doi: 10.1175/1520-0450(1996)035<0902:ACOWRS>2.0.CO;2