Deriving Atmospheric Zonal Mean Winds from Refractive Index Data
-
摘要: 鉴于地转风、梯度风和平衡风各自计算风场的特点,该文利用COSMIC掩星折射指数资料,根据大气折射指数与大气密度、风场之间的关系,选用梯度风方程,建立了推算20~60 km中层大气纬圈平均风场的方法,分别与ECMWF提供的ERA-interim及NASA/GMAO提供的MERRA再分析风场资料对比验证。选用2007年1,4,7月和10月的COSMIC掩星折射指数数据,按照构建的方法计算了大气纬圈平均风场,并简单分析了大气纬圈平均纬向风随纬度、高度的变化特征及规律。计算风场与ECMWF及MERRA再分析风场资料变化规律基本一致,符合效果很好, 能够正确反映出纬向平均风场特性。1月及7月不同高度标准偏差、最大偏差随高度增加而增大,标准偏差最大约为6 m/s,最大偏差不超过11 m/s,沿纬度方向相关系数有减小的趋势,但不低于0.98,4月及10月偏差稍小,最大偏差不超过8 m/s。结果表明:利用COSMIC掩星折射指数资料通过梯度风方程计算风场,是获取中层大气20~60 km纬圈平均风场的一种有效方法。Abstract: There are few effective ways to explore the middle atmospheric wind field directly at the altitude range of 20—60 km, and the direct sounding methods have some limitations, but the wind field could be derived from atmospheric refractive index and pressure data. From the bending angles, a large number of profiles of atmospheric refractivity, pressure and temperature are obtained with the newly launched Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)/Formosa Satellite 3(FORMOSAT-3) System. Taking full advantage of these data has a positive impact on the research of the global middle atmospheric wind field. The approach for calculating middle atmosphere zonal mean winds at the altitude range of 20—60 km is constructed according to gradient wind equations from atmospheric refractive index data, considering the characteristics and calculation methods of geostrophic wind, gradient wind and balance wind respectively, and the relationships among atmospheric refractive index, density and wind field. Following the method constructed above, the middle atmosphere zonal mean winds are calculated by the gridded refractive index data in January, April, July and October of 2007 and the latitude-height distributions of zonal mean winds are discussed. The gridded data is derived through the inverse distance weighted interpolation method. The data is compared with monthly average wind data of European Centre for Medium Range Weather Forecasts Reanalysis-interim (ERA-interim) and the Modern Era Retrospective-analysis for Research and Applications (MERRA) data sets for validation. The comparisons reveal excellent agreement, and the characteristics of calculated winds are similar with that of the reanalyzed winds. In January and July, easterly winds prevail in summer hemisphere zonal mean zona1 winds and it increase as the height increases, while in winter westerly winds prevail hemisphere zone-mean zona1 winds. The zonal wind first increases and then decreases from the high-latitude to the low-latitude regions of winter hemisphere, with the maximum in the middle-latitude regions of winter hemisphere. The root mean square deviation and the largest deviation at different heights are larger and larger along the heights, while the correlation coefficients along latitude get smaller, but it is still greater than 0.98. The root mean square deviation is about 6 m·s-1, and the largest deviation is less than 11 m·s-1in January and July. Spring and autumn are the transition periods, when westerly winds prevail in global, but decrease versus increasing heights in the high-latitude regions of northern hemisphere and even reverse near the top in April; westerly winds prevail in the high-latitude regions, while for some altitudes in the low-latitude regions easterly winds are dominant. The differences are not very large in April and October, with the largest deviation no more than 8 m·s-1, indicating that deriving wind fields from the COSMIC refractive index data through gradient wind equations is an effective way.
-
Key words:
- COSMIC occultation;
- refractive index;
- middle atmosphere;
- zonal mean winds
-
表 1 2007年1月及7月COSMIC计算风场和再分析风场在1~30 hPa等压面的纬圈平均纬向风偏差
Table 1 The zone-mean zonal winds bias between the COSMIC and reanalysis derived for various heights from 1 to 30 hPa in January and July of 2007
高度层 最大偏差/(m·s-1) 标准偏差/(m·s-1) 相关系数 COSMIC与
ECMWFCOSMIC与
MERRACOSMIC与
ECMWFCOSMIC与
MERRACOSMIC与
ECMWFCOSMIC与
MERRA1月 7月 1月 7月 1月 7月 1月 7月 1月 7月 1月 7月 30 hPa (约23 km) 2.51 2.27 2.86 2.25 1.11 1.01 1.31 1.20 0.997 0.999 0.997 0.999 20 hPa (约26 km) 3.94 3.04 4.21 3.05 1.50 1.41 1.70 1.69 0.997 0.999 0.997 0.999 10 hPa (约30 km) 6.63 4.49 7.04 4.70 2.02 2.20 2.27 2.48 0.996 0.998 0.996 0.998 7 hPa (约33 km) 7.09 5.45 7.89 5.44 2.17 2.70 2.42 2.95 0.996 0.998 0.996 0.998 5 hPa (约35 km) 7.41 6.29 8.55 6.72 2.34 3.21 2.55 3.69 0.996 0.997 0.996 0.997 3 hPa (约39 km) 8.26 7.65 9.04 8.93 2.83 3.96 2.79 4.90 0.995 0.997 0.995 0.996 2 hPa (约42 km) 7.81 9.30 8.52 9.55 3.23 4.72 3.07 5.14 0.994 0.996 0.994 0.996 1 hPa (约47 km) 7.32 10.82 7.77 10.60 5.08 6.19 4.47 6.00 0.987 0.996 0.990 0.996 -
[1] Andrews D G, Holton J R, Leovy C B.Middle Atmosphere Dynamics. London:Academic Press Inc, 1987. [2] Hedin A E, Fleming E L, Manson A H, et al. Empirical wind model for the upper middleand lower atmosphere. J Atmos Solar-Terr Phys, 1996, 58:1421-1447. doi: 10.1016/0021-9169(95)00122-0 [3] Fleming E L, Chandra S, Barnett J J, et al. Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv Space Res, 1990, 10(12):11-59. doi: 10.1016/0273-1177(90)90386-E [4] Oberheide J, Hagan M E, Ward W E, et al.Modeling the diurnal tide for the Cryogenic Infrared Spectrometers and Telescopes for the Atmospheric (CRISTA)1 time periode.J Geophys Res, 2000, 105:24917-24929. doi: 10.1029/2000JA000047 [5] 马瑞平, 廖怀哲.中国地区20—80 km高空风的一些特征.空间科学学报, 1999, 19(4):334-341. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjkb199904007&dbname=CJFD&dbcode=CJFQ [6] 刘三军, 熊建刚, 万卫星, 等.利用Aura卫星资料计算全球中层大气背景风场.空间科学学报, 2007, 27(5):400-408. doi: 10.11728/cjss2007.05.400 [7] Kursinski E R, Hajj G A, Bertiger W L, et a1.Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System. Science, 1996, 271:1107-1110. doi: 10.1126/science.271.5252.1107 [8] 杜明斌, 杨引明, 丁金才.COSMIC反演精度和有关特性检验.应用气象学报, 2009, 20(5):586-593. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090510&flag=1 [9] Anthes R A, Bernhardt P A, Chen Y, et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull Amer Meteor Soc, 2008, 89:313-333. doi: 10.1175/BAMS-89-3-313 [10] 徐影, 丁一汇, 赵宗慈.美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析.应用气象学报, 2001, 12(3):337-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010345&flag=1 [11] http://www.ecmwf.int/research/era/do/get/ERA-Interim_brief. [12] 范晓青, 李维京, 张培群.模式大气月尺度可预报性对比研究.应用气象学报, 2003, 14(1):49-60. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030106&flag=1 [13] Trenberth K E, Stepanish D P.Apthological problem with NCEP reanalysis in the stratosphere. J Climate, 2002, 16 (6):690-695. http://www.nws.noaa.gov/ost/climate/STIP/Trenberth_jc_02.pdf [14] Michele Rienecker, Max Suarez, Ricardo Todling, et al. MERRA & US Reanalysis Plans & Activities. http://www.geofaculty.org:16080/reanalysis/rienecker_MERRA_(presentation).pdf. [15] Jarrett Cohen. MERRA Project to Reconstruct Last 30 Years of Earth's Climate and Weather. http://science.gsfc.nasa.gov/606/docs/newsletter/cisto_news.summer07.pdf. [16] 庄立伟, 王石立.东北地区逐日气象要素的空间插值方法应用研究.应用气象学报, 2003, 14(5):605-615. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030575&flag=1 [17] 高歌, 龚乐冰, 赵珊珊, 等.日降水量空间插值方法研究.应用气象学报, 2007, 18(5):731-736. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200705111&flag=1 [18] 刘式达, 刘式适.大气动力学.北京:北京大学出版社, 1999:17-20. [19] 肖存英, 胡雄, 田剑华.利用卫星温度资料计算风场的方法分析与比较.地球物理学报, 2008, 51(2):325-336. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200802006.htm [20] 徐晓华, 罗佳.COSMIC掩星折射指数廓线的统计验证.武汉大学学报 (信息科学版), 2009, 34(2):214-217. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200902024.htm [21] 蔡兆男, 王永, Liu Xiong, 等.利用探空资料验证GOME卫星臭氧数据.应用气象学报, 2009, 20(3):337-345. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090310&flag=1