May—July Temperature Variability Since 1801 Inferred from Tree Rings of Pinus tabulaeformis of Helan Mountains in China
-
摘要: 利用2008年10月采自贺兰山北部的油松树轮样本建立了贺兰山北部区域树轮密度年表。相关分析表明:贺兰山北部的树轮早材平均密度与银川气象站5—7月平均最高温度具有较好的正相关关系,相关系数为0.67。用贺兰山北部的区域早材平均密度差值年表重建贺兰山北部1801—2008年的5—7月平均最高温度,58年 (1951—2008年) 重建值对实测值的解释方差为44.9%;2008年的贺兰山北部温度重建序列平均值为27.40℃。在最近20年,贺兰山树轮早材平均密度出现了明显的上升趋势,通过比对贺兰山北部重建序列的低温年份和全球火山爆发数据,发现在大规模火山爆发后的28个偏冷年温度平均值为26.90℃,较重建序列平均值下降0.50℃。多窗谱分析表明:贺兰山北部温度重建序列具有120年、8.1年、6.5年、3.2年、2.9年、2.1年的准周期变化。贺兰山北部早材平均密度与甘肃石门山、昌灵山油松的早材平均密度有良好的相关性。Abstract: Ninety newly measured tree-ring width and density series from Chinese Pines (Pinus tabulaeformis) from four sites in Helan Mountains are compiled. To remove non-climatic, age-related growth trends from the raw tree-ring width and density measurement series, while allowing lower frequency information above the mean segment length to be preserved, the program ARSTAN is used to detrend the ring width and density sequences using hugershoff growth curve and to average the standardized ring width and density sequences into the master chronologies. The correlating coefficient between earlywood density record and May—July maximum temperature of Yinchuan reaches up to 0.67 during 1951—2008. The May—July maximum temperature reconstruction (1801—2008) uses the earlywood density chronologies from the region. The explained variance of model is 44.9% (F=45.625, P < 0.0001). The mean temperature over the 1801—2008 periods is estimated to be 27.4 ℃. The reconstructed temperature has 3 warm periods, including 1801—1812, 1940—1953, and 1994—2008. The rising of temperature series in the 2000s is the fastest and indicates that temperature in the 2000s has been warmer than any other period since 1801. The reconstructed temperature during the last 208a has significant period cycles of 120 years (95%), 8.1 years (95%), 6.5 years (90%), 3.2 years (95%), 2.9 years (95%), and 2.1 years (99%). Many low density values are forced by volcanic eruptions. Comparison shows volcanic eruptions have no systematic relationship with this reconstruction data, but they are correlated with the regional characteristics of the temperature and forcing data. Detailed analysis, however, suggests a cooling of several years following primarily tropical events with a volcanic eruption index (VEI). Examples include Tambora in Indonesia (1815), Cosiguina in Nicaragua (1935), Chikurachki in Kurilels (1853), Sheveluch in Kamchatka (1854), Krakatu in Java (1883), Okataina in New Zealand (1886), Santa Maria in Guatemala (1902), Ksudach in Kamchatka (1907), Katmai in Alaska (1912), Bezymianny in Kamchatka (1956), Agung in Indonesia (1963), St Helens in US (1980), El Chichon in Mexico (1982), and Pinatubo in Philippines (1991). The mean of 28 low values after volcanic eruption in reconstructed temperature series is 26.9℃, which is 0.5℃ lower than the average over the 1801—2008. The earlywood density of Helan Mountains has good relations with the earlywood densities of Shimen Mountains and Changling Mountains in Gansu.
-
表 1 树轮采样点概况
Table 1 Survey of the sampled sites of tree rings
采样点 树种 海拔/m 坡向 坡度/(°) 纬度 经度 样本量 苏裕口 油松 2260~2320 EEN 25~45 38°44′N 105°55′E 44 北寺 油松 2205~2210 NNW 25~30 38°58′N 105°55′E 52 大西沟 油松 2100 NNE 35 38°59′N 105°57′E 44 南寺 油松 2240~2280 EEN 19~25 38°41′N 105°50′E 40 表 2 贺兰山北部综合差值年表主要统计特征
Table 2 Tree-ring residual chronologies statistics in the north part of Helan Mountains
年表名称 平均敏感度 标准差 相关性 信噪比 样本总解释量 第1特征向量百分比/% 一阶自相关系数 年轮宽度 0.322 0.349 0.359 8.946 0.899 42.7 0.29 早材宽度 0.364 0.386 0.367 9.286 0.903 43.6 0.27 晚材宽度 0.282 0.301 0.196 3.903 0.796 29.7 0.27 早材平均密度 0.046 0.047 0.255 5.479 0.846 33.1 0.06 晚材平均密度 0.049 0.058 0.223 4.591 0.821 30.7 0.34 早材最小密度 0.058 0.056 0.252 5.379 0.843 32.0 -0.06 晚材最大密度 0.055 0.062 0.238 4.987 0.833 32.0 0.29 表 3 树轮密度与气候要素的响应分析
Table 3 Summary of the significant response function coefficients
气象要素 树轮密度 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 平均温度 早材平均密度 ○ Ο Ο 晚材平均密度 早材最小密度 ○ Ο Ο 晚材最大密度 平均最高温度 早材平均密度 Ο Ο Ο Ο 晚材平均密度 早材最小密度 Ο Ο Ο Ο 晚材最大密度 平均最低温度 早材平均密度 ○ 晚材平均密度 ○ 早材最小密度 ○ 晚材最大密度 ○ 降水量 早材平均密度 ● ● 晚材平均密度 ○ 早材最小密度 ● ● 晚材最大密度 Ο Ο 注:Ο与○表示正相关,●表示负相关;Ο与●表示超过0.01显著性水平,○表示超过0.05显著性水平。 表 4 贺兰山北部温度重建序列的相关统计特征
Table 4 Summary characteristics of temperature reconstruction in the north part of Helan Mountains
年份 冷年值/℃ 2002 26.50 1992 26.60 1983 26.70 1964 26.80 1970 26.80 1977 26.80 1979 26.80 1884 26.80 1895 26.80 1921 26.80 2008 29.30 1947 28.90 1994 28.60 1953 28.50 1804 28.40 2005 28.40 1811 28.30 1890 28.30 1957 28.30 1997 28.30 1970 27.20 1980 27.20 1960 27.28 1880 27.29 1830 27.34 1930 27.35 1820 27.36 1870 27.37 1840 27.38 1910 27.39 2000 27.88 1800 27.66 1950 27.64 1990 27.57 1890 27.56 1940 27.56 1810 27.53 1850 27.45 1900 27.44 1860 27.43 1810-1899 27.43 1900-2008 27.44 2000-2008 27.90 1801-2008 27.40 表 5 重建气温序列与火山爆发
Table 5 The temperature reconstruction and volcanic eruptions
火山爆发 重建序列对
应低温年份距平值/℃ Tambora (1815年) 1816—1818 -0.4 Cosiguina (1835年) 1834—1835 -0.4 Chikurachki (1853年),
Sheveluch (1854)1853—1854 -0.3 Krakatu (1883年),
Okataina (1886年)1884—1888 -0.5 Santa Maria (1902年) 1902 -0.4 Ksudach (1907年),
Katmai (1912年)1908—1913 -0.4 Bezymianny (1956年) 1956 -0.7 Agung (1963年) 1963—1964 -0.7 St Helens (1980年) 1979—1980 -0.6 El Chichon (1982年) 1983—1985 -0.7 Pinatubo (1991年) 1992 -1.0 -
[1] Büntgen U, Frank D C, Nievergelt D, et a1. Summer temperature variations in the European Alps, AD755—2004. J Climate, 2006, 19: 5606-5623. doi: 10.1175/JCLI3917.1 [2] Büntgen U, Frank D C, Esper J, et a1. A 1052-year tree-ring proxy for Alpine summer temperatures. Cliamte Dynamics, 2005, 25: 141-153. doi: 10.1007/s00382-005-0028-1 [3] Büntgen U, Frank D C, Grudd H, et a1. Long-term summer temperature variations in the Pyrenees. Climate Dynamics, 2008, 31: 615-631. doi: 10.1007/s00382-008-0390-x [4] Wilson R J S, Luckman B H. Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada. The Holocene, 2003, 13(6): 851-861. doi: 10.1191/0959683603hl663rp [5] Briffa K R, Jones P D, Schweingruber F H. Summer temperature patterns over Europe: A reconstruction from 1750 AD based on maximum latewood density indices of conifers. Quaternary Research, 1988, 30: 36-52. doi: 10.1016/0033-5894(88)90086-5 [6] Wang L L, Payette S, Begin Y. Tree-ring width and density characteristics of living, dead and subfossil black spruce at treeline in arctic Queébec. The Holocene, 2001, 11(3): 333-341. doi: 10.1191/095968301674769686 [7] Luckman B H, Wilson R J S. Summer temperatures in the Canadian Rockies during the last millennium—a revised record. Climate Dynamics, 2005, 24: 131-144. doi: 10.1007/s00382-004-0511-0 [8] Briffa K R, Jones P D, Schweingruber F H, et a1. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 1998, 393: 450-455. doi: 10.1038/30943 [9] Xiong L M, Naoki O, Takeshi F, et a1. Chronology development and climate response analysis of different New Zealand pink pine (Halocarpus biformis) tree-ring parameters. Canadian Journal of Forest Research, 1998, 28: 566-573. doi: 10.1139/x98-028 [10] Pant G B, Kumar K R, Borgaonkar H P, et al. Climatic response of Cedrus deodara tree-ring parameters from two sites in the western Himalaya. Canadian Journal of Forest Research, 2000, 30: 1127-1135. doi: 10.1139/x00-038 [11] Fan Z X, Bräuning A, Yang B, et a1. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change, 2008, 65: 1-11. http://adsabs.harvard.edu/abs/2009gpc....65....1f [12] Wang Lily, Duan Jianping, Chen Jin, et a1. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China. International Journal of Climatology, 2009, 30: 1311-1316. doi: 10.1002/joc.2000/pdf [13] 王丽丽, 邵雪梅, 黄磊, 等.黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应.植物生态学报, 2005, 29(3):380-385. doi: 10.17521/cjpe.2005.0050 [14] Chen Jin, Wang Lily, Zhu Haifeng, et al. Reconstructing mean maximum temperature of growing season from the maximum density of the Schrenk Spruce in Yili, Xinjiang, China. China Science Bulletin, 2009, 54(1): 1-9. doi: 10.1007/s11434-009-0027-4 [15] 袁玉江, Esper J, 魏文寿, 等.新疆天山西部三个云杉上树线树轮最大密度年表的研制、相关性及其气候信号分析.干旱区地理, 2008, 31(4): 560-566. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200804018.htm [16] 刘禹, 吴祥定, 邵雪梅, 等.树轮密度、稳定C同位素对过去近100a陕西黄陵季节温度与降水的恢复.中国科学 (D辑), 1997, 27(3): 271-276. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703013.htm [17] 刘禹, 马利民, 蔡秋芳, 等.采用树轮稳定碳同位素重建贺兰山1890年以来夏季 (6~8月) 温度.中国科学 (D辑), 2002, 32(8): 667-674. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200208006&dbname=CJFD&dbcode=CJFQ [18] 刘禹, 史江峰, Shishov V, 等.以树轮晚材宽度重建公元1726年以来贺兰山北部5~7月降水量.科学通报, 2004, 49(3): 256-269. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200403012.htm [19] 刘禹, 王雷, 史江峰, 等.利用贺兰山北部树轮资料重建过去270年以来6~8月平均干燥指数.第四纪研究, 2005, 25(5): 540-544. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200505001.htm [20] 蔡秋芳, 刘禹.油松树轮记录的1776年以来贺兰山地区温度变化.地理学报, 2006, 61(9):930-936. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE200703004.htm [21] Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin, 1983, 43: 69-78. https://www.researchgate.net/publication/235665554_Computer-Assisted_Quality_Control_in_Tree-Ring_Dating_and_Measurement [22] Park W. Development of Anatomical Tree-ring Chronologies from Southern Arizona Conifers Using Image Analysis. Tucson: The University of Arizona, 1990. [23] Schweingruber F H, Fritts H C, Bräker O U, et al. The X-ray technique as applied to dendroclimatology. Tree-Ring Bulletin, 1978, 38: 61-91. https://www.researchgate.net/publication/285460634_The_X-ray_technique_as_applied_to_dendroclimatology?ev=auth_pub [24] Cook E R. A Time Series Analysis Approach to Tree-ring Standardization. Tucson: The University of Arizona, 1985. [25] 邵雪梅, 吴祥定.华山树木年轮年表的建立.地理学报, 1994, 49(2): 174-181. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB402.008.htm [26] Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteor, 1984, 23: 201-213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 [27] Panyushkina I P, Hughes M K, Vaganov E A. Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. Canadian Journal of Forest Research, 2003, 33: 1905-1914. doi: 10.1139/x03-109 [28] 吴祥定, 邵雪梅.中国秦岭地区树木年轮密度对气候响应的初步分析.应用气象学报, 1994, 5(2):253-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940244&flag=1 [29] 尹训钢, 吴祥定.华山松树木年轮对气候响应的模拟分析.应用气象学报, 1995, 6(3): 257-264. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950342&flag=1 [30] 史江峰, 刘禹, Vaganov E, 等.贺兰山油松生长的气候响应机制初步探讨.第四纪研究, 2005, 25(2):245-251. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ20050200H.htm [31] 李江风, 袁玉江, 由希尧, 等.树木年轮水文学研究与应用.北京:科学出版社, 2000. [32] 陈峰, 袁玉江, 魏文寿, 等.呼图壁河流域过去313 a春季平均最高温度序列及其特征分析.中国沙漠, 2009, 29(1): 162-167. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200901029.htm [33] 王绍武, 叶瑾琳, 龚道溢, 等.近百年中国年温度序列的建立.应用气象学报, 1998, 9(4): 392-401. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980459&flag=1 [34] 靳立亚, 秦宁生, 勾晓华, 等.青海南部高原近450年来春季最高温度序列及其时变特征.第四纪研究, 2005, 25(2): 193-201. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ20050200A.htm [35] 侯迎, 王乃昂, 李钢, 等.利用树轮资料重建1751—2005年崆峒山地区夏季温度变化.气候变化研究进展, 2007, 3(3): 172-176. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703012.htm [36] 陈峰, 袁玉江, 魏文寿, 等.利用树轮图像灰度重建南天山北坡西部初夏温度序列.中国沙漠, 2008, 28(5): 842-847. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200805009.htm [37] 许靖华.太阳、气候、饥荒与民族大迁徙.中国科学 (D辑), 1998, 28(4): 366-384. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199804012.htm [38] Mann M E, Lee J M. Robust estimate estimation of background noise and signal detection in climatic time series. Climatic Change, 1996, 33: 409-445. doi: 10.1007/BF00142586 [39] Thomson D J. Time series analysis of Holocene climate date. Philosophical Transactions of the Royal Society, 1990, 330: 601-616. doi: 10.1098/rsta.1990.0041 [40] Thomson D J. Quadratic-inverse spectrum estimates: Applications to palaeoclimatology. Philosophical Transactions of the Royal Society, 1990, 332: 593-597. [41] 林振山, 邓自旺.子波气候诊断技术的研究.北京:气象出版社, 1999. [42] 黄春长.环境变迁.北京:科学出版社, 2000. [43] 曲维政, 刘应辰, 黄菲, 等.平流层火山气溶胶时空传播规律及其气候效应.应用气象学报, 2010, 21(5):253-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100513&flag=1 [44] 王绍武.全球温度变暖的检测及成因分析.应用气象学报, 1993, 4(2): 226-233. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930239&flag=1 [45] Jones P D, Briffa K R, Schweingruber F H. Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophys Res Lett, 1995, 22: 1333-1336. doi: 10.1029/94GL03113