Numerical Simulations of Lee Wave's Nonlinear Characteristics and Vapor Sensitivity
-
摘要: 从Scorer的背风波发生理论条件出发,首先考虑3层均匀干空气,利用WRF模式模拟出干空气条件下的小振幅拦截背风波动,波动主要发生在2~5 km的高度范围,波长为8 km左右,这与之前的观测和模拟结果相一致。分析表明:形成平稳背风波动过程中,存在能量波包向下游传播的性质,各位置振动的强度会发生周期性的增强和衰减。引入水汽进行的敏感性试验表明:随着水汽增多,背风波动的波长会增加,且波动传播中所能达到的最大垂直速度有变小趋势。Abstract:
Based on the Scorer's theory of the lee wave, the trapped lee wave of small amplitude is successfully simulated using the Weather Research and Forecasting (WRF) model, considering the dry atmosphere with three even layers. Results show that in the linear theory, the trapped lee wave of the flow over terrain can be simulated well. The wave appears primarily from 2 km to 5 km in the vertical direction and the wavelength is on the order of 8 km. These results are in accordance with previous observation and numerical simulations.The analysis shows that the energy wave packet drifts downstream in the forming process of stationary lee wave and the oscillation intensity of each location periodically amplifies and weakens. At the same time, before the stable trapped lee wave forms, small disturbances have been generated, which would have significant impacts on vertical velocity of the wave.The process of introducing vapor is deemed to be creditable according to the original relative humidity vertical profile by WRF model output data. Small disturbances mentioned make vapor oscillate and easily initiate cumulus convection. Further, with vapor content increasing, cumulus convection appears earlier in the simulation. When vapor is introduced in the model, the lee wave would interact with cumulus convection, which has not been discussed in detail.Sensitivity experiments are conducted by changing the relative humidity of air, and the simulated results about the vapor's effect to the lee wave show that as the vapor increases, the wavelength becomes longer. In the simulation, the wavelength increases from 8 km to 9 km when relative humidity increases from 0 to 60%. In essence, it is buoyancy oscillation in the vertical direction of lee wave. The increase of the turbulent friction is attributed to the air density changes because of the variation of humidity, and then the damp of the oscillation increases. As a result, the oscillation frequency in the moist air is smaller than that in the dry air, accordingly the lee wave shifts to longer wavelength.Besides, when vapor is introduced in the model, the maximum of vertical velocity in the process of wave propagation has a decreasing tendency. For one thing, the strength of the lee wave can be weakened by the growth of turbulent friction. On the other hand, the vertical velocity will decrease with the air density increasing for the same wave energy.
-
Key words:
- lee wave;
- WRF model;
- nonlinear;
- vapor;
- numerical simulation
-
表 1 数值试验中不同相对湿度空气发生对流的时间
Table 1 Initial convection time of simulations under various relative humidity
相对湿度/% 对流发生时间 50 第70分钟 60 第60分钟 70 第10分钟 90 第10分钟 -
[1] Bannon P R, Yuhas J A. On mountain wave drag over complex terrain. Meteorol Atmos Phys, 1990, 43:155-162. doi: 10.1007/BF01028118 [2] Nance L B, Durran D R. A modeling study of nonstationary trapped mountain lee waves. Part Ⅰ: Mean-flow variability. J Atmos Sci, 1997, 54: 2275-2291. doi: 10.1175/1520-0469(1997)054<2275:AMSONT>2.0.CO;2 [3] 叶笃正.小地形对于气流的影响.气象学报, 1965, 27(3):243-262. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195603004.htm [4] Forchtgott J. Wave currents on the leeward side of mountain crests. Meteorologicke Zpravy, 1949, 3:49-51. [5] Starr J R, Browning K A. Observations of lee wave by high power-radar. Q J R Meteorol Soc, 1972, 98:73-85. doi: 10.1002/(ISSN)1477-870X [6] Corby G A. A preliminary study of atmospheric waves using radiosonde data. Q J R Meteorol Soc, 1957, 83:49-60. doi: 10.1002/(ISSN)1477-870X [7] Colson D V. The airflow over mountains. A review of the state of current knowledge. Q J R Meteorol Soc, 1954, 80:491-521. doi: 10.1002/(ISSN)1477-870X [8] Queney P. The problem of air flow over mountain: A summary of theoretical studies. Bull Amer Meteor Soc, 1948, 29:16-26. [9] Scorer R S. Theory of waves in lee of mountains. Q J R Meteorol Soc, 1949, 75:41-56. doi: 10.1002/(ISSN)1477-870X [10] 温市耕, 桑建国.二维波状地形上的流场.应用气象学报, 1995, 6(1):27-34. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950105&flag=1 [11] 钟中, 周小刚.地形对地转气流中重力惯性波稳定性影响的进一步研究.应用气象学报, 1997, 8(1):92-98. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970112&flag=1 [12] 桑建国.大气中的内船舶波.中国科学 (B辑), 1997, 27(6):560-565. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199706014.htm [13] 桑建国.三维地形的波动阻力.应用气象学报, 1998, 8(增刊):36-42. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.005.htm [14] 刘辉志, 洪钟祥, 桑建国, 等.地形引起的重力内波的水槽实验.气象学报, 2001, 59(1):59-65. doi: 10.11676/qxxb2001.007 [15] Corby G A, Wallington C E. Airflow over mountains: The lee wave amplitude. Q J R Meteorol Soc, 1956, 82 : 266-274. doi: 10.1002/(ISSN)1477-870X [16] Smith R B, Skubis S, Doyle J D, et al. Mountain waves over Mont Blance: Influence of a stagnant boundary layer. J Atmos Sci, 2002, 59:2073-2092. doi: 10.1175/1520-0469(2002)059<2073:MWOMBI>2.0.CO;2 [17] Zang Z L, Zhang M. A study of the environment influence on the amplitude of lee waves. Adv Atmos Sci, 2008, 25(3):474-480. doi: 10.1007/s00376-008-0474-x [18] 李子良.三维分层流动过双山脉地形激发的大气船舶重力波动力学理论和数值试验.地球物理学报, 2007, 50(1):34-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200701004.htm [19] Sharman R D, Wurtele M G. Three-dimensional structure of forced gravity waves and lee waves. J Atmos Sci, 2004, 61:664-681. doi: 10.1175/1520-0469(2004)061<0664:TSOFGW>2.0.CO;2 [20] Atkinson B W.大气中尺度环流.北京:气象出版社, 1987:64-65. [21] 陆汉城, 吕梅, 何齐强.一次冷锋后胞线的大振幅重力波特性分析.应用气象学报, 1992, 3(2):136-144. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920227&flag=1 [22] Smith R B. The steepening of hydrostatic mountain waves. J Atmos Sci, 1977, 34:1634-1654. doi: 10.1175/1520-0469(1977)034<1634:TSOHMW>2.0.CO;2 [23] Sawyer J S. Numerical calculation of the displacements of a stratified airstream crossing a ridge of small height. Q J R Meteorol Soc, 1960, 86:326-345. doi: 10.1002/(ISSN)1477-870X [24] Sawyer J S. Gravity waves in the atmosphere as a three-dimensional problem. Q J R Meteorol Soc, 1962, 88:412-425. doi: 10.1002/(ISSN)1477-870X [25] Vergeiner I, Lilly D K. The dynamic structure of lee wave flow as obtained from balloon and airplane observations. Mon Wea Rev, 1970, 98:220-232. doi: 10.1175/1520-0493(1970)098<0220:TDSOLW>2.3.CO;2 [26] Mitchell R M, Cechet R P, Turner P J, et al. Observation and interpretation of wave clouds over Macquarie Island. Q J R Meteorol Soc, 1990, 116: 741-752. doi: 10.1002/(ISSN)1477-870X [27] 臧增亮, 张铭, 张瑰.三维三层背风波的理论和数值研究.大气科学, 2007, 31(3):547-552. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200703017.htm [28] 臧增亮, 张铭.三层模式中背风波存在条件的理论分析.水动力学研究与进展 (A辑), 2005, 20(5):577-584. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200505006.htm [29] Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model. J Climate Appl Meteor, 1983, 22:1065-1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 [30] 李子良.水汽空间分布对大气船舶重力波影响的数值试验.气象学报, 2006, 64(3):308-314. doi: 10.11676/qxxb2006.029 [31] 陈明, 傅抱璞, 郑维忠.山地中尺度环流中的大气边界层湍流摩擦效应.气象学报, 1996, 54(2):216-224. doi: 10.11676/qxxb1996.022 [32] 刘辉志, 洪钟祥, 桑建国.大气中粘性效应对三维地形波及其波动阻力的影响.气候与环境研究, 1999, 4(3):547-552. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH199903013.htm