留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

季风湿润区冬季水汽收支年际及年代际变化特征

廖荣伟 赵平

廖荣伟, 赵平. 季风湿润区冬季水汽收支年际及年代际变化特征. 应用气象学报, 2011, 22(6): 641-653..
引用本文: 廖荣伟, 赵平. 季风湿润区冬季水汽收支年际及年代际变化特征. 应用气象学报, 2011, 22(6): 641-653.
Liao Rongwei, Zhao Ping. Interannual and interdecadal variations of winter water budgets in the East Asian monsoon humid region. J Appl Meteor Sci, 2011, 22(6): 641-653.
Citation: Liao Rongwei, Zhao Ping. Interannual and interdecadal variations of winter water budgets in the East Asian monsoon humid region. J Appl Meteor Sci, 2011, 22(6): 641-653.

季风湿润区冬季水汽收支年际及年代际变化特征

资助项目: 

国家重点基础研究发展计划项目 2009CB421404

详细信息
    通信作者:

    赵平, E-mail: zhaoping@cams.cma.gov.cn

Interannual and Interdecadal Variations of Winter Water Budgets in the East Asian Monsoon Humid Region

  • 摘要: 采用1958—2007年NCEP/NCAR再分析资料和我国160站降水资料,对东亚大陆季风湿润区冬季的水汽收支变化与大气环流和我国降水异常特征的关系进行研究。结果表明:冬季水汽收支时间序列表现出明显的长期气候变化趋势。挑选的水汽收支高、低值年不仅能够指示季风湿润区经向风的异常变化,还能够指示东亚冬季风的强弱和降水的异常变化。高值年,蒙古冷高压和阿留申低压偏弱,对流层低层为异常偏南风,整层为异常逆时针环流,30°N以南的辐合和上升运动强,大气水分收入增多,降水增加;低值年则相反。差值合成的异常降水量中心值可达40 mm以上,差值合成的水汽异常输入主要集中在600~900 hPa。合成的经向水汽收支占净收支变化的91.3%,纬向上相差较小。季风湿润区南、北区域的水汽收支及降水的差异明显,纬向的收入支出对此差异贡献较大。水汽收支的年代际特征,不仅能够指示水汽输送的强弱及从海洋输入水汽的多少,还能够指示季风湿润区降水的变化,且差值合成的异常降水量最大可达30 mm以上。
  • 图  1  东亚季风湿润区

    (22°~41°N, 105°~110°E, 110°~120°E)

    Fig. 1  The East Asian Monsoon Humid Region

    (22°—41°N, 105°—110°E, 110°—120°E)

    图  2  1958—2007年东亚季风湿润区冬季标准化的水汽收支时间序列

    Fig. 2  The normalized temporal change of the water budgets in the East Asian Monsoon Humid Region during winter from 1958 to 2007

    图  3  东亚季风湿润区冬季水汽收支高、低值年差值合成的水汽输送、水汽通量散度分布 (阴影区表示通过90%信度检验) (a) 水汽输送,(b) 水汽通量散度 (单位:mm·d-1)

    Fig. 3  Difference in composites for winter water vapor transport and divergence between the high and low years in the East Asian Monsoon Humid Region (the shaded represents passing the test of 90% level) (a) water vapor transport, (b) water vapor transport divergence (unit: mm·d-1)

    图  4  东亚季风湿润区冬季水汽收支时间序列与同期表面气压之间的相关系数 (a),高值年 (b)、低值年 (c) 对应的表面气压 (等值线,单位:hPa) 及表面风场距平 (矢量) 分布

    (灰色区域表示通过90%信度检验,粗虚线为1500 m高度)

    Fig. 4  The correlation coefficient of winter water budgets and surface pressure in the East Asian Monsoon Humid Region (a), the high anomalies (b) and the low anomalies (c) of surface pressure (isoline, unit: hPa) and surface wind (vector) distributions

    (the grey area represents passing the test of 90% level, the thick dashed line represents the height of 1500 m)

    图  5  冬季水汽收支高、低值年差值合成的100 hPa风场 (a)、100 hPa辐散场 (单位:107s-1)(b)、500 hPa位势高度场 (单位:gpm)(c)、850 hPa风场 (d) 的差值分布 (灰色区域表示通过90%信度检验;黑色区域表示地形)

    Fig. 5  Difference in composites for winter wind at 100 hPa between the high and low years (a), divergence at 100 hPa (unit: 107s-1)(b), geopotential height at 500 hPa (unit: gpm)(c) and winter wind at 850 hPa (d)

    (the grey area represents passing the test of 90% level; the black area represents terrain)

    图  6  冬季水汽收支高、低值年差值合成的850 hPa水汽通量散度 (单位:10-5 kg·m-2·s-1)(a)、850 hPa假相当位温 (单位:K)(b)、22°~30°N平均的垂直速度 (单位:10-2 Pa·s-1)(c) 和假相当位温 (单位:K)(d) 及110°~120°E平均的垂直速度 (单位:10-2 Pa·s-1)(e) 和假相当位温 (单位:K)(f) 的差值分布 (灰色区域表示通过90%信度检验;黑色区域表示地形)

    Fig. 6  Difference in composites for winter water vapor transport divergence at 850 hPa between the high and low years (unit:10-5 kg·m-2·s-1)(a) and pseudo-equivalent temperature (unit: K), 22°—30°N average vertical velocity (unit: 10-2 Pa·s-1)(c) and pseudo-equivalent temperature (unit: K)(d), 110°—120°E average vertical velocity (unit:10-2 Pa·s-1)(e) and pseudo-equivalent temperature (unit: K)(f)

    (the grey area represents passing the test of 90% level; the black area represents terrain)

    图  7  1958—2007年东亚季风湿润区冬季高、低值年差值合成的边界水汽输送差值分布 (单位:kg·m-1·s-1)

    (灰色区域表示通过90%信度检验;黑色区域表示地形)

    Fig. 7  Difference in composites for the vertical distribution of winter water vapor transport in the border between the high and low years in the East Asian Monsoon Humid Region (unit: kg·m-1·s-1)

    (the grey area represents passing the test of 90% level; the black area represents terrain)

    图  8  1958—2007年东亚季风湿润区冬季水汽收支高、低值年差值合成的降水量分布 (单位:mm)(a),1958—2007年冬季降水量标准差 (单位:mm)(b) 及平均降水量与整层水汽通量散度的相关系数

    (灰色区域表示通过90%信度检验)

    Fig. 8  Difference in composites for winter precipitation between the high and low years (unit: mm)(a), the standard deviation of precipitation (unit: mm)(b), the correlation coefficient of precipitation and water vapor transport divergence (c) in the East Asian Monsoon Humid Region during winter from1958 to 2007

    (the grey area represents passing the test of 90% level)

    图  9  东亚季风湿润区冬季水汽输送 (a)、降水量 (单位:mm)(b) 的年代际变化 (灰色区域表示通过90%信度检验)

    Fig. 9  The decade difference in composites for winter water vapor transport (a) and precipitation (unit:mm)(b) between the periods of 1986—1992 and 1973—1981 in the East Asian Monsoon Humid Region

    (the grey area represents passing the test of 90% level)

    图  10  1958—2007年东亚季风湿润区冬季标准化的南、北区域水汽收支时间序列 (a) 及北部 (b)、南部 (c) 区域水汽收支时间序列与水汽通量散度的相关系数分布

    (灰色区域表示通过90%信度检验)

    Fig. 10  The winter normalized temporal change of the water budgets (a) and the correlation coefficient of water vapor transport divergence and water budgets in north (b), south (c) parts of the East Asian Monsoon Humid Region during winter from 1958 to 2007

    (the grey area represents passing the test of 90% level)

    表  1  东亚季风湿润区冬季高、低值年区域平均的水汽收支及降水量距平变化

    Table  1  The water budgets and precipitation between high and low years in the East Asian Monsoon Humid Region

    距平 高值年 低值年 差值
    经向水汽收支/(104m3·s-1) 2.15 -2.68 4.83
    纬向水汽收支/(104m3·s-1) 0.44 -0.02 0.46
    水汽净收支/(104m3·s-1) 2.59 -2.70 5.29
    降水量/mm 7.3 -8.1 15.4
    下载: 导出CSV

    表  2  东亚季风湿润区冬季多年平均的南、北区域经、纬向水汽收支及降水变化

    Table  2  The climatological mean of water budgets and precipitation in north and south parts of the East Asian Monsoon Humid Region

    区域 纬向水汽收支/(104m3·s-1) 经向水汽收支/(104m3·s-1) 区域水汽收支/(104m3·s-1) 降水量/mm
    北部区域 -3.72 1.65 -2.07 20.6
    南部区域 4.42 -1.58 2.84 53.2
    下载: 导出CSV
  • [1] 陈隆勋, 朱乾根, 罗会邦, 等.东亚季风.北京:气象出版社, 1991.
    [2] 赵平, 南素兰.气候和气候变化领域的研究进展.应用气象学报, 2006, 17(6):725-735. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606121&flag=1
    [3] 赵平, 周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报, 2006, 17(5):548-556. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060594&flag=1
    [4] Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part Ⅰ: Characteristics of the water vapor flux field. Mon Wea Rev, 1967, 95:403-426. doi:  10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2
    [5] Rasmusson E M, Mo K C. Large-scale atmospheric moisture cycling as evaluated from NMC global analysis and forecast products. J Climate, 1996, 9:3276-3297. doi:  10.1175/1520-0442(1996)009<3276:LSAMCA>2.0.CO;2
    [6] Roads J O, Chen S C, Guetter A K, et al. Large-scale aspects of the United States hydrological cycle. Bull Amer Meteor Soc, 1994, 75:1589-1610. doi:  10.1175/1520-0477(1994)075<1589:LSAOTU>2.0.CO;2
    [7] Simmonds I, Bi D H, Hope P. Atmospheric water vapor flux and its association with rainfall over China in summer. J Climate, 1999, 12(5):1353-1367. doi:  10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
    [8] Ninomiya K. Moisture balance over China and the South China Sea during the summer monsoon in relation to the intense rain-falls over China. J Meteor Soc Japan, 1999, 77(3):737-751. doi:  10.2151/jmsj1965.77.3_737
    [9] Draper C, Mills G. The atmospheric water balance over a semi-arid river basin. Journal of Hydrometeorology, 2008, 9(3):521-534. doi:  10.1175/2007JHM889.1
    [10] Liu J, Stewart R. Water vapor fluxes over the Saskatchewan river basin. Journal of Hydrometeorology, 2003, 4(5):944-959. doi:  10.1175/1525-7541(2003)004<0944:WVFOTS>2.0.CO;2
    [11] Leung L R, Qian Y, Han J, et al. Intercomparison of global reana lysis and regional simulations of cold season water budgetss in the Western United States. Journal of Hydrometeorology, 2003, 4(6):1067-1087. doi:  10.1175/1525-7541(2003)004<1067:IOGRAR>2.0.CO;2
    [12] Ralph F, Neiman P, Wick G. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon Wea Rev, 2004, 132(7):1721-1745. doi:  10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
    [13] Todd M, Washington R, Palmer P. Water vapour transport associated with tropical temperature trough systems over southern Africa and southwest Indian ocean. International Journal of Climatology, 2004, 24: 555-568. doi:  10.1002/(ISSN)1097-0088
    [14] Muoñz E, Busalacchi A J, Nigam S, et al. Winter and summer structure of the Caribbean low-level jet. J Climate, 2008, 21:1260-1267. doi:  10.1175/2007JCLI1855.1
    [15] Arraut J M, Satyamurty P. Precipitation and water vapor transport in the southern hemisphere with emphasis on the south American region. Journal of Applied Meteorolog and Climatology, 2009, 48(9):1902-1912. doi:  10.1175/2009JAMC2030.1
    [16] Knippertz P, Wernli H. A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. J Climate, 2010, 23:987-1003. doi:  10.1175/2009JCLI3333.1
    [17] Schäfler A, Dörnbrack A, Kiemle C, et al. Tropospheric water vapor transport as determined from airborne lidar measurements. J Atmos Ocean Technol, 2010, 27(12): 2017-2030. doi:  10.1175/2010JTECHA1418.1
    [18] Sohn B J, Park S C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res, 2010, 115, D15112, doi: 10.1029/2009JD013713.
    [19] 黄荣辉, 张振洲, 黄刚, 等.夏季东亚季风区水汽输送特征及其与南亚季风区水气输送的差别.大气科学, 1998, 22 (4):460-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.007.htm
    [20] He J H, Sun C H, Liu Y Y, et al. Seasonal transition feature of large-scale moisture transport in the Asian-Australian monsoon region. Advances in Atmospheric Sciences, 2007, 24(1):1-14. doi:  10.1007/s00376-007-0001-5
    [21] 范广洲, 程国栋.青藏高原隆升对西北干旱气候形成影响的模拟 (Ⅱ):水汽收支及高原动力、热力作用的影响.高原气象, 2003, 22(增刊):58-66. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2003S1008.htm
    [22] 徐祥德, 陈联寿, 王秀荣, 等.长江流域梅雨带水汽输送源-汇结构.科学通报, 2003, 48(21):2288-2294. doi:  10.3321/j.issn:0023-074X.2003.21.015
    [23] Zhang R H, Sumi A. Moisture circulation over east Asia during El Nino episode in northern winter, spring and autumn. J Meteor Soc Japan, 2002, 80(2):213-227. doi:  10.2151/jmsj.80.213
    [24] 赵瑞霞, 吴国雄.黄河流域中上游水分收支以及再分析资料可用性分析.自然科学进展, 2006, 16(3):316-324. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200603012.htm
    [25] 赵瑞霞, 吴国雄.长江流域水分收支以及再分析资料可用性分析.气象学报, 2007, 65(3):416-427. doi:  10.11676/qxxb2007.039
    [26] 简茂球, 陈蔚翔, 乔云亭, 等.广东大尺度大气水汽汇的年际及年代际变化特征.热带气象学报, 2007, 23(6):545-552. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200706003.htm
    [27] 张文君, 周天军, 宇如聪.中国东部水分收支的初步分析.大气科学, 2007, 31(2):329-345. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200702014.htm
    [28] 周长艳, 蒋兴文, 李跃清, 等.高原东部及邻近地区空中水汽资源的气候变化特征.高原气象, 2009, 28(1):55-63. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811003096.htm
    [29] 丁一汇, 孙颖, 李跃凤, 等. 20世纪90年代东亚严重旱涝事件的大尺度条件分析//我国旱涝重大气候灾害及其形成机理研究.北京:气象出版社, 2003:260-275.
    [30] 施小英, 施晓晖, 毛嘉富.夏季东亚地区水汽输送年代际变化特征及其对中国东部降水的影响.地理学报, 2009, 64(7):861-870. doi:  10.11821/xb200907010
    [31] 施小英, 施晓晖.夏季青藏高原东南部水汽收支气候特征及其影响.应用气象学报, 2008, 19(1): 41-46. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080108&flag=1
    [32] 索渺清, 丁一汇.冬半年副热带南支西风槽结构和演变特征研究.大气科学, 2009, 33(3):425-442. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903002.htm
    [33] 陈际龙, 黄荣辉.亚洲夏季风水汽输送的年际年代际变化与中国陆地旱涝的关系.地球物理学报, 2008, 51(2):352-359. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200802008.htm
    [34] Yang W X, Li H Y, Li Z T, et al. Analysis on vapor field for the drought causes in Beijing, Tianjin and Hebei districts in recent years. Agricultural Science & Technology, 2010, 11 (1):117-121. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNNT201001042.htm
    [35] 廖荣伟, 赵平.东亚季风湿润区水分收支的气候特征.应用气象学报, 2010, 21(6):649-658. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100602&flag=1
    [36] 谢安, 毛江玉, 宋焱云, 等.长江中下游地区水汽输送的气候特征.应用气象学报, 2002, 13(1):67-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020108&flag=1
    [37] Huang R H, Zhou L T, Chen W. The progresses of recent studies of the variabilities of the East Asian monsoon and their causes. Adv Atmos Sci, 2003, 20:55-69. doi:  10.1007/BF03342050
    [38] Yanai M, Esbensen S, Chu J H. Determination of average bulk properties of tropical cloud clusters from larger-scale heat and moisture budgets. Journal of Atmospheric Science, 1973, 30 (4):611-627. doi:  10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
  • 加载中
图(10) / 表(2)
计量
  • 摘要浏览量:  3664
  • HTML全文浏览量:  981
  • PDF下载量:  1458
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-10
  • 修回日期:  2011-09-15
  • 刊出日期:  2011-12-31

目录

    /

    返回文章
    返回