Regional Emissions of Gaseous Pollutants Based on Observations
-
摘要: 利用2006年9月—2007年8月河北省固城生态与农业气象试验基地 (固城站) 反应性气体观测数据获得了CO与NOx,CO与SO2,SO2与NOx体积分数比的变化特征,并将观测得到的体积分数比与从INTEX-B等排放源资料得到的排放比进行比较研究。当风向来自北方向 (北京) 时,固城站的CO和NOx体积分数显著高于其他方向,而来自南方向 (保定、石家庄) 时,SO2体积分数显著高于其他方向。固城站观测到的CO与SO2,CO与NOx体积分数比分别为43.7和31.6,较排放比高出2~12倍。分析表明:排放源清单对CO排放低估了大约2倍以上,生物质燃料燃烧,尤其是收获季节大规模秸秆燃烧排放可能是重要的且被低估了的源。从观测数据估计得到秸秆燃烧期比平时CO大约多排放了90%±30%,忽略秸秆燃烧期额外排放对CO排放强度估计有重要影响。未来排放源清单编制和使用需要更加关注我国农业区秸秆燃烧排放对排放强度的影响。Abstract: Measurements of ambient CO, NOx and SO2 made at Gucheng Station, Hebei Province, China from September 2006 to August 2007 are analyzed and applied to the validation of emission inventory data. It shows that the concentrations of these gases are significantly correlated among each other, suggesting that the gases have common sources. The concentration ratios of CO to NOx, CO to SO2 and SO2 to NOx for the entire day, daytime and nighttime in different seasons are obtained based on the slopes of the respective correlation lines. The results show that the seasonal variations of the ratios are not very high and the correlations of CO and NOx, CO and SO2, SO2 and NOx in winter are more significant than those in other seasons. There is large difference between the daytime and nighttime in the ratio of CO to NOx, particularly in the warmer seasons, indicating strong photochemical impact on the ratio of CO to NOx. There are certain dependences of the gas concentrations and the concentration ratios on wind directions, reflecting the different impacts of sources from different wind sectors. The prevailing surface wind directions at the Gucheng Station are northeast and southwest, facilitating the transport of plumes from Beijing and Baoding, respectively. When winds come from the north sector (Beijing), surface concentrations of CO and NOx are significantly higher than those from other directions, and when the winds come from south sector (Baoding, Shijiazhuang), surface concentration of SO2 is significantly higher than that from other directions. The characteristics of pollutants in different wind directions may reflect the characteristics of pollution sources in different directions. The concentration ratios from the observations are compared with emission ratios derived from the emission inventories (INTEX-B, TRACE-P, REAS, HB). To avoid the influences from inadequate vertical mixing and strong photochemistry, only afternoon data in seasons other than summer are considered. Under this condition, the observed concentration ratios are 43.7 and 31.6 for CO to SO2 and for CO to NOx, respectively, which are 2—12 times higher than the respective emission ratios derived from the emission inventories. This result suggests that CO emission may be underestimated by more than two times in the emission inventories. Further studies show that CO emission from biomass combustion, especially the large-scale straw combustion in harvest seasons would be the important but greatly underestimated source. The analysis of the observation data indicates that the average CO level in open straw burning periods is (90%±30%) higher than that in the other periods under similar meteorological conditions. So far, biofuels are still used for cooking and heating by rural families in many Chinese regions and open burning of agricultural residues is often not effectively controlled. In the future, the impacts of emissions from agricultural straw burning on the emission strengths should be given more attention in the process of making and using the emission inventories.
-
Key words:
- SO2;
- NOx;
- CO;
- emission ratio;
- Gucheng Station
-
表 1 排放源数据基本信息
Table 1 Basic information about the emission inventories
名称 研究区域 基准年份 分辨率 INTEX-B 东亚 2006 0.5°×0.5° REAS 东亚 2006 0.5°×0.5° HB 华北 2003 0.1°×0.1° TRACE-P 东亚 2000 1.0°×1.0° 表 2 不同季节CO,NOx和SO2体积分数线性回归结果
Table 2 Results of linear regression among CO, NOx and SO2 for different periods
季节 时段 CO与NOx CO与SO2 SO2与NOx 斜率 截距/10-9 相关系数 斜率 截距/10-9 相关系数 斜率 截距/10-9 相关系数 春季 全天 40.5 419 0.63 34.5 700 0.44 0.66 0.9 0.74 白天 56.2 319 0.71 30.6 647 0.44 0.87 2.1 0.75 夜晚 28.0 589 0.49 25.9 917 0.31 0.48 0.8 0.70 夏季 全天 32.4 592 0.24 59.6 593 0.43 0.40 2.3 0.41 白天 60.7 226 0.50 28.0 618 0.60 1.42 -5.8 0.60 夜晚 9.0 772 0.24 45.1 696 0.45 0.11 3.4 0.29 秋季 全天 38.6 162 0.75 22.9 1144 0.27 0.30 4.3 0.50 白天 43.6 217 0.76 36.2 791 0.48 0.41 6.0 0.54 夜晚 29.5 497 0.66 31.2 1436 0.30 0.20 2.5 0.45 冬季 全天 42.3 129 0.89 61.8 148 0.76 0.41 16.1 0.70 白天 44.8 28 0.89 54.5 -102 0.79 0.56 15.4 0.77 夜晚 39.9 246 0.86 58.0 727 0.72 0.38 13.3 0.66 全年 全天 38.4 326 0.82 49.9 599 0.73 0.54 1.5 0.81 白天 39.4 446 0.82 42.0 560 0.72 0.68 3.8 0.82 夜晚 36.1 388 0.82 53.3 869 0.72 0.46 -0.8 0.76 注:春、夏、秋、冬季节划分分别为3—5月、6—8月、9—11月和12月—次年2月;白天时段为08:00—19:59,夜晚时段为20:00—次日07:59。 表 3 基于INTEX-B的固城和北京CO,NOx and SO2排放量 (单位:103 t·a-1/网格)
Table 3 INTEX-B emission strengths of CO, NOx and SO2 in Gucheng and Beijing (unit:103 t·a-1/grid)
地点 工业 居民 交通 电厂 CO NOx SO2 CO NOx SO2 CO NOx SO2 CO NOx SO2 固城 13.6 0.7 0.3 14.4 0.2 0.4 22.7 2.2 0.1 0.3 1.1 2.3 北京 103.5 6.2 4.8 58.6 2.7 5.7 247.9 23.0 0.9 2.6 11.4 13.6 表 4 固城站周围不同区域排放源的排放比
Table 4 Emission ratio derived from the emission inventories in different areas around Gucheng Station
格点区域 INTEX-B REAS TRACE-P* HB CO与SO2 CO与NOx CO与SO2 CO与NOx CO与SO2 CO与NOx CO与SO2 CO与NOx 固城站北和东北方向 (38.75°~
41.25°N,115.25°~117.25°E)10.1 8.7 3.7 5.7 5.8 10.2 12.6 11.4 固城站南和西南方向 (37.25°~
38.75°N,113.75°~115.25°E)5.2 11.3 5.3 14.9 3.5 8.0 14.3 9.1 北京 (39.75°~40.25°N,
115.75°~116.25°E)16.5 9.5 6.5 11.9 3.5 6.8 13.6 9.7 保定 (38.25°~38.75°N,
115.25°~115.75°E)7.4 13.1 3.7 12.0 4.7 10.5 14.5 19.1 固城站 (38.75°~39.25°N,
115.25°~115.75°E)16.4 12.0 6.4 19.4 9.4 15.6 7.5 16.1 注:*TRACE-P中固城站北和东北方向的区域范围为38°~41°N,115°~117°E;固城站南和西南方向的区域范围为37°~39°N,113°~115°E;北京的区域范围为39°~40°N,116°~117°E;保定的区域范围为38°~39°N,115°~116°E;固城站的区域范围为39°~40°N,115°~116°E。 -
[1] Streets D G, Waldhoff S T. Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmos Environ, 2000, 34: 363-374. doi: 10.1016/S1352-2310(99)00167-3 [2] Hao J M, Wang L T. Improving urban air quality in China: Beijing case study. J Air Waste Manage Assoc, 2005, 55: 1298-1305. doi: 10.1080/10473289.2005.10464726 [3] 徐晓斌, 刘希文, 林伟立.输送对区域本底站痕量气体浓度的影响.应用气象学报, 2009, 20(6): 656-664. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090602&flag=1 [4] Streets D G, Zhang Q, Wang L, et al. Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations. J Geophys Res, 2006, 111, D14306, doi: 10.1029/2006JD007118. [5] Ohara T, Akimoto H, Kurokawa J, et al. An Asian emission inventory of anthropogenic emission sources for the period 1980—2020. Atmos Chem Phys, 2007, 7: 4419-4444. doi: 10.5194/acp-7-4419-2007 [6] 赵斌.华北地区大气污染源排放状况研究.北京:中国气象科学研究院, 2007. [7] 钟流举, 郑君瑜, 雷国强, 等.大气污染物排放源清单不确定性定量分析方法及案例研究.环境科学研究, 2007, 20(4): 15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200704004.htm [8] 颜鹏, 黄健, Draxler R.北京地区SO2污染的长期模拟及不同类型排放源影响的计算与评估.中国科学D辑:地球科学, 2005, 35 (特刊Ⅰ): 167-176. http://d.wanfangdata.com.cn/Periodical/zgkx-cd2005z1016 [9] 房小怡, 蒋维楣, 季崇萍, 等.北京交通环境污染诊断模拟初步研究.应用气象学报, 2002, 13(特刊): 214-222. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1023.htm [10] 颜鹏, 房秀梅, 李兴生.临安地区地面SO2变化规律及其源地分析.应用气象学报, 1999, 10(3): 265-275. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990366&flag=1 [11] 颜鹏, 黄健.周边地区对北京地面SO2影响的初步研究.应用气象学报, 2002, 13(特刊): 144-152. http://d.wanfangdata.com.cn/Periodical/yyqxxb2002z1016 [12] Wang T, Cheung T F, Li Y S, et al. Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. J Geophys Res, 2002, 107(D12), doi: 10.1029/2001JD000724. [13] Wang Y, Hao J, McElroy M B, et al. Ozone air quality during the 2008 Beijing Olympics-effectiveness of emission restrictions. Atmos Chem Phys, 2009, 9: 5237-5251. doi: 10.5194/acp-9-5237-2009 [14] Li C, Marufu L T, Dickerson R R, et al. In situ measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian study of tropospheric aerosols: An international regional experiment 2005. J Geophys Res, 2007, 112, D22S04, 10.1029/2006JD007592. doi: 10.1029/2006JD007592 [15] Lin W L, Xu X B, Ge B Z, et al. Characteristics of gaseous pollutants at Gucheng, a rural site southwest of Beijing. J Geophys Res, 2009, 114, D00G14, doi:10.1029/ 2008JD010339. [16] 刘希文.北京及周边地区气态污染物区域特征及输送研究.北京:中国气象科学研究院, 2010. [17] Zhang Q, Streets D G, Carmichael G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys, 2009, 9: 5131-5153. doi: 10.5194/acp-9-5131-2009 [18] Parrish D D, Trainer M, Buhr M P, et al. Carbon moNOxide concentrations and their relation to concentrations of total reactive oxidized nitrogen at two rural U.S. sites. J Geophys Res, 1991, 96: 9309-9320. doi: 10.1029/91JD00047 [19] Kok G L, Lind J A, Fang M. An airborne study of air quality around the Hong Kong territory. J Geophys Res, 1997, 102: 19043-19057. doi: 10.1029/97JD01306 [20] Zhang Q, Streets D G, He K, et al. NOx emission trends for China, 1995—2004: The view from the ground and the view from space. J Geophys Res, 2007, 112, D22306, doi: 10.1029/2007JD008684. [21] Li L J, Wang Y, Zhang Q, et al. Wheat straw burning and its associated impacts on Beijing air quality. Science in China Series D: Earth Sciences, 2008, 51(3): 403-414. doi: 10.1007/s11430-008-0021-8 [22] 曹国良, 张小曳, 王丹, 等.中国大陆生物质燃烧排放的污染物清单.中国环境科学, 2005, 25(4):389-393. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ200504002.htm [23] 郑晓燕, 刘咸德, 赵峰华, 等.北京市大气颗粒物中生物质燃烧排放贡献的季节特征.中国科学B辑:化学, 2005, 35(4): 346-352. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200504014.htm [24] 李阳.基于观测的污染气体区域排放特征研究.北京:中国气象科学研究院, 2011. [25] Holloway T, Levy II H, Kasibhatla P. Global distribution of carbon monoxide. J Geophys Res, 2000, 105(D10): 12123-12147. doi: 10.1029/1999JD901173 [26] Warneck P. Chemistry of the Natural Atmosphere. New York: Academic Press, 1988. [27] 孟昭阳, 丁国安, 于海青, 等.北京北部城区SO2和NO2浓度垂直分布特点初探.应用气象学报, 2002, 13(特刊): 109-112. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yyqx2002s1011&dbname=CJFD&dbcode=CJFQ