Monitoring of Low Temperature in Fujian Based on the Distance to the Coastline and GIS Technology
-
摘要: 利用福建省1:250000的DEM资料和67个气象站气温观测数据,在建立最低气温与经纬度、海拔高度相关推算方程的基础上, 融合离海距因子, 对2008—2010年冬季3个冷空气过程的最低气温 (数值及分布状态) 进行精细模拟,同时总结出利用逐步回归及综合残差平方和选取适宜离海距的方法。结果表明:融合离海距因子后,对冷空气过程最低气温的模拟效果更好。随着过程平均降温幅度的增大,离海距对过程最低气温模拟值的贡献率有减小趋势。不同冷空气过程的离海距大小存在差异,总体上以50 km为标准,再进一步得出适宜离海距。离海距以外区域最低气温模拟适用经度、纬度、海拔高度3个因子确定的地理气候方程进行,以内区域则适用在上述最低气温模拟方法的基础上融合离海距因子进行,以达到提高低温监测模拟精度和体现海洋对陆地温度调节能力的目的。经检验,模拟结果与实际情况基本相符。
-
关键词:
- 地理信息系统 (GIS);
- 适宜离海距;
- 低温过程;
- 温度模拟;
- 地理因子
Abstract: Based on the 1:250000 Digital Elevation Model (DEM) data and statistical data of the air temperature of 67 weather stations, considering the distance to coastline in Fujian Province considering the feedback effect of ocean to continent, the geographic mathematical model is established depending on the connections between factors such as the lowest temperature, latitude, longitude, altitude, and is used to simulate the fine distribution of lowest temperature in cold air processes of winter from 2008 to 2010.On the basis of the ascertainment of coastline and proven distributions, the appropriating calculation formula of the distance to coastline is ensured and the three monitoring models of low temperature processes are founded based on the choice of different distance to coastline or no distance to coastline. Moreover, the models are analyzed comparably and the best model is applied to simulate the low temperature. Contemporarily, the method of selecting appropriate the distance to coastline is approved by regression models and integrative residual sum of squares, and the transacting process of simulated errors in the joint of inter and outer coastline is introduced.The results show that the lowest temperature is well simulated by introducing the appropriate distance to coastline to the low temperature monitoring model during the cold air processes. With the increase of average cooling range of cold air, the efficiency of distance to the coastline factor to the value of the minimum temperature simulation decreases. Moreover, the distances to the coastline are changed with the different cold air processes and are not more than 50 kilometers. Furthermore, the method of how to select appropriate distance to the coastline is confirmed based on the value of different square sum. Although there is adjusting effect of ocean temperature to land temperature, with the increase of distance to coastline, the feedback effect on temperature of ocean to land decreases, and the mathematical model made up of factors such as longitude, latitude, altitude and the distance to coastline is suitable for low temperature monitoring simulation in regions where the distance to the coastline are more than 50 kilometers. Similarly, the mathematical model made up of factors as longitude, latitude, altitude and the distance to coastline is suitable for low temperature monitoring simulation in regions of the distance less more than 50 kilometers, which could increase the precision of low temperature monitoring simulation and embody the adjustment function of sea to land temperature. Finally, 9 destined samples (each sample is selected optionally from one city of Fujian) are verified in the model and the simulated results of low temperature are proved to match with actual situation substantially. -
表 1 TDP与选取不同d计算形式的相关系数
Table 1 The correlation coefficients of TDP to different d
离海距 相关系数 残差平方和/℃ d -0.7200 349.15 1/d 0.3879 615.85 d1/2 -0.7698 295.29 d1/4 -0.7767 287.57 d1/6 -0.7724 292.39 lnd -0.7493 317.92 lgd -0.7493 317.92 表 2 融合离海距前后低温模拟效果对比
Table 2 The contrast of primal model and merged the distance to the coastline in air temperature simulation
过程 模型 a0 a1 a2 a3 a4 Rmax/℃ Rmin/℃ 残差平方和/℃2 1 A 57.60 1.14×10-5 -2.13×10-5 -0.0045 -0.147 3.68 0.01 86.2 1 B 66.41 1.80×10-5 -2.62×10-5 -0.0048 3.75 0.04 92.4 2 A 47.60 1.16×10-5 -1.85×10-5 -0.0049 -0.183 3.02 0.03 88.0 2 B 57.36 1.97×10-5 -2.45×10-5 -0.0053 3.38 0.09 97.6 3 A 39.69 7.60×10-5 -1.47×10-5 -0.0068 -0.006 2.42 0.00 51.7 3 B 40.02 7.90×10-6 -1.49×10-5 -0.0068 2.43 0.02 51.7 注:a0为常数项,a1~a4为系数, Rmax,Rmin为最低气温实测值与模拟值的最大、最小残差绝对值。 表 3 不同过程及离海距内外区域平均降温幅度 (单位:℃)
Table 3 The average cooling range of different regions and processes (unit:℃)
过程 范围 平均降温幅度/℃ 1 福建省 11.73 d≤45 km 9.55 d>45 km 13.38 2 福建省 7.18 d≤41 km 6.45 d>41 km 7.69 3 福建省 13.93 d≤60 km 12.06 d>60 km 15.55 表 4 利用综合残差平方和确定适宜离海距 (单位:℃2)
Table 4 Appropriate distance to the coastline confirmed by the method of integrative residual sum of squares (unit:℃2)
离海距/km 过程1 过程2 过程3 区域内残
差平方和区域外残
差平方和综合残差
平方和区域内残
差平方和区域外残
差平方和综合残差
平方和区域内残
差平方和区域外残
差平方和综合残差
平方和25 16.78 36.52 53.30 21.49 42.42 63.91 11.19 28.30 39.49 50 30.33 19.01 49.34 37.34 24.52 61.87 15.76 21.38 37.14 100 48.62 16.40 65.02 50.91 20.84 71.75 32.11 12.45 44.56 150 64.74 6.40 71.14 65.05 6.83 71.88 43.33 3.75 47.08 200 84.59 1.05 85.64 83.35 1.94 85.29 50.73 0.12 50.85 45 28.10 19.53 47.63 41 35.42 25.01 60.43 60 15.92 21.18 37.10 表 5 利用适宜离海距进行低温监测模拟的效果
Table 5 The influence of the appropriate distance to the coastline in low temperature simulation models
过程 离海距/km a0 a1 a2 a3 a4 Rmax/℃ Rmin/℃ 残差平方和/℃2 1 d≤45 116.33 4.82×10-5 -5.14×10-5 -0.0020 -0.042 2.36 0.078 28.10 1 d>45 48.34 1.02×10-5 -1.89×10-5 -0.0037 1.79 0.01 19.53 2 d≤41 95.38 3.83×10-5 -4.22×10-5 -0.0022 -0.093 2.54 0.02 35.42 2 d>41 37.38 1.28×10-5 -1.65×10-5 -0.0045 2.31 0.01 25.01 3 d≤60 76.12 2.66×10-5 -3.22×10-5 -0.0040 -0.021 2.04 0.002 15.92 3 d>60 34.15 8.80×10-6 -1.30×10-5 -0.0068 2.09 0.024 21.18 表 6 验证站最低气温实测值、模拟值和误差绝对值
Table 6 The actual minimum air temperature value, simulated value and absolute error of validate stations
过程 比较项目 明溪 建阳 上杭 永春 平和 闽侯 福安 莆田 同安 1 d/km >45 >45 >45 >45 >45 >45 < 45 < 45 < 45 实测值/℃ -4 -3.5 0.9 1.7 1.8 1.8 -0.1 6.8 6.2 模拟值/℃ -3.00 -3.39 -0.41 1.02 2.57 1.32 -2.13 5.04 5.02 误差绝对值/℃ 1.00 0.11 1.31 0.68 0.77 0.48 2.03 1.76 1.18 2 d/km >41 >41 >41 >41 >41 >41 < 41 < 41 < 41 实测值/℃ -6.6 -5.6 -1.9 -0.7 0.3 -0.2 -1.2 3.1 2.8 模拟值/℃ -5.63 -5.40 -3.51 -1.48 -0.36 -0.58 -3.64 2.51 2.72 误差绝对值/℃ 0.97 0.20 1.61 0.78 0.66 0.38 2.44 0.59 0.08 3 d/km >60 >60 >60 < 60 < 60 < 60 < 60 < 60 < 60 实测值/℃ -2.4 -1.5 1.2 1.8 3.4 1.5 0.9 4.3 4.1 模拟值/℃ -1.63 -1.03 0.60 1.53 3.00 2.72 -0.95 3.85 4.13 误差绝对值/℃ 0.77 0.47 0.60 0.27 0.40 1.22 1.85 0.45 0.03 -
[1] 张星, 郑有飞, 周乐照.农业气象灾害灾情等级划分与年景评估.生态学杂志, 2007, 26(3): 418-421. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200807158.htm [2] 温克刚, 宋德众, 蔡诗树.中国气象灾害大典——福建卷.北京:气象出版社, 2007:1-3. [3] 何燕, 李政, 廖雪萍.基于GIS的巴西陆稻IAPAR29种植气候区划研究.应用气象学报, 2007, 18(2): 219-224. doi: 10.11898/1001-7313.20070237 [4] 罗伦.无测站地方平均气温的推求方法.气象, 1978, 4(2): 31-32. doi: 10.7519/j.issn.1000-0526.1978.02.023 [5] 梁敬, 朱家龙.山区热量资源的估算方法.气象, 1981, 7(10): 24-25. doi: 10.7519/j.issn.1000-0526.1981.10.010 [6] 张洪亮, 倪绍祥, 邓自旺, 等.基于DEM的山区气温空间模拟方法.山地学报, 2002, 20(3): 360-364. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200203017.htm [7] 朱琳, 朱延年, 陈明彬, 等.基于GIS陕南商洛地区农业气候资源垂直分层.应用气象学报, 2007, 18(1): 108-113. doi: 10.11898/1001-7313.20070119 [8] 方书敏, 秦将为, 李永飞, 等.基于GIS的甘肃省气温空间分布模式研究.兰州大学学报:自然科学版, 2005, 41(2): 6-9. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200502002.htm [9] 李军, 游松财, 黄敬峰.中国1961—2000年月平均气温空间插值方法与空间分布.生态环境, 2006, 15(1): 109-114. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200601023.htm [10] 杨凤海, 王帅, 刘晓庆, 等.基于ArcGIS的近10年黑龙江省旬平均气温插值与建库.黑龙江农业科学, 2009(5): 120-124. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJN200905048.htm [11] 唐力生, 杜尧东, 陈新光, 等.广东寒害低温过程动态监测模型.生态学杂志, 2009, 28(2): 366-370. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200902033.htm [12] 王春林, 刘锦銮, 周国逸, 等.基于GIS技术的广东荔枝寒害监测预警研究.应用气象学报, 2003, 14(4): 487-495. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030460&flag=1 [13] 王瑾, 刘黎平.基于GIS的贵州省冰雹分布与地形因子关系分析.应用气象学报, 2008, 15(9): 627-634. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080515&flag=1 [14] 蔡文华, 陈家金, 陈惠.福建省2004/2005冬季低温评价和果树冻害成因分析.亚热带农业研究, 2005, 1(3): 35-39. http://www.cnki.com.cn/Article/CJFDTOTAL-GZZZ200503008.htm [15] 吴仁烨, 陈家豪, 徐宗焕, 等.漳州果树种植适宜性区划的GIS应用.福建农林大学学报:自然科学版, 2009, 38(4): 366-370. http://www.cnki.com.cn/Article/CJFDTOTAL-FJND200904007.htm [16] 杜尧东, 李春梅, 毛慧琴.广东省香蕉与荔枝寒害致灾因子和综合气候指标研究.生态学杂志, 2006, 25(2): 225-230. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200602022.htm [17] 何燕, 谭宗琨, 李政, 等.基于GIS的广西甘蔗低温冻害区划研究.西南大学学报:自然科学版, 2007, 29(9): 81-85. http://www.cnki.com.cn/Article/CJFDTOTAL-XNND200709016.htm [18] 何燕, 李政, 谭宗琨, 等. GIS支持下的广西龙眼冻害区划研究.云南农业大学学报, 2009, 24(15): 725-728. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDX200905020.htm [19] Myburgh J. Estimation of minimun temperature on a mesoscale. South African Journal of Plant and Soil Functional Ecology, 1985, 2(2): 89-92. doi: 10.1080/02571862.1985.10634143 [20] 李文, 蔡文华, 王加义.利用宁德市沿海越冬热量条件发展晚熟龙眼荔枝.中国农业气象, 2005, 26(4): 239-241. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200504009.htm [21] 王加义, 李文, 蔡文华.应用GIS进行闽东南果树避冻农业气候区划.福建农业科技, 2005(6): 60-62. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNK200506036.htm [22] 蔡文华, 李文.用地理因子模拟年度极端最低气温模式的探讨.气象, 2003, 29(7): 31-34. doi: 10.7519/j.issn.1000-0526.2003.07.007 [23] 蔡文华, 李文, 王加义. 海洋对台湾海峡西岸沿海最低气温的影响//新世纪气象科技创新与大气科学发展——农业气象与生态环境. 北京: 气象出版社, 2003: 395-398. [24] 周淑玲, 丛美环, 吴增茂. 2005年12月3—21日山东半岛持续性暴雪特征及维持机制.应用气象学报, 2008, 19(4): 444-453. doi: 10.11898/1001-7313.20080408 [25] 章国材, 李晓莉, 乔林.夏季500 hPa副热带高压区域一次暴雨过程环流条件的诊断分析.应用气象学报, 2005, 16(3): 396-401. doi: 10.11898/1001-7313.20050314 [26] 张腾飞, 鲁亚斌, 张杰. 2000年以来云南4次强降雪过程的对比分析.应用气象学报, 2007, 18(1):64-72. doi: 10.11898/1001-7313.20070112 [27] Matzarakis A, Balafoutis C. Heating degree-days over Greece as an index of energy consumption. International Journal of Climatology, 2004, 24(14): 1817-1828. doi: 10.1002/(ISSN)1097-0088 [28] Miyazaki Hiroshi, Moriyama Masakazu. Study on estimation of air temperature distribution by using neural network. Journal of Architecture, Planning and Environmental Engineering, 2001, 543:71-76. [29] Markow T A, Raphael B, Dobberfuhl D, et al. Elemental stoichiometry of Drosophila and their hosts. Functional Ecology, 1999, 13: 78-84. doi: 10.1046/j.1365-2435.1999.00285.x [30] 夏东兴, 段焱, 吴桑云.现代海岸线划定方法研究.海洋学研究, 2009, 27(增刊): 28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DHHY2009S1005.htm [31] 王法辉.基于GIS的数量方法与应用.北京:商务出版社, 2009:29-31.