Retrieval of Land Surface Temperature and Dynamic Monitoring of a High Temperature Weather Process Based on FY-3A/VIRR Data
-
摘要: 采用FY-3A/VIRR数据,利用Becker局地分裂窗改进算法反演得到逐日陆表温度 (LST), 对2009年一次高温天气过程进行动态监测, 并分析不同下垫面的热环境变化。结果显示:此过程中可见光红外扫描辐射计 (VIRR) 陆表温度产品在敦煌辐射校正场地两次验证的误差为-0.17 K和1.77 K,与同时间过境的MODIS产品均方根误差为2.64 K,直方图对比陆表温度的频数分布基本一致;对高温天气过程监测发现,此次出现以华北的石家庄、郑州、北京等地和西北地区东部的西安等地为中心的两个陆表温度高值区, 部分地区达到了320.2 K以上;城市剖面资料证实城市热岛现象存在,并发现工矿用地的热岛效应不容忽视,主要是大面积的工矿用地周围植被破坏严重,地表增温更为显著。
-
关键词:
- FY-3A/VIRR;
- 陆表温度;
- 局地分裂窗算法;
- 高温天气过程;
- 动态监测
Abstract: Split-window algorithm is mainly used for retrieving land surface temperature in thermal infrared remote sensing. Around seventeen algorithms have been published in recent years, but few have been applied to Chinese meteorological satellite data such as FY-3 series. FY-3A, the first of this series is launched from Taiyuan Satellite Launch Centre in China on 27 May, 2008. This new generation satellites series provide three dimensional, quantitative, multi spectrum global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global change research, climate diagnostics and prediction, and natural disasters monitoring. The visible and infrared scanning radiometer (VIRR), medium resolution spectral imager (MERSI) and microwave imaging instrument (MWRI) aboard this satellite can all be used for retrieving the land surface temperature (LST) and monitoring the process of high temperature weather.Daily LST products are retrieved by the improved Becker algorithm using the FY-3A/VIRR data. And the first process of high temperature weather in 2009 is monitored and the changes of thermal environment in different land types are analyzed. First, a modified Becker's split window retrieval algorithm is developed using VIRR thermal infrared spectral response function for retrieving LST from the FY-3A/VIRR data. A new set of parameters for Becker's LST algorithm is proposed. The algorithm is developed from a surface brightness temperature dataset generated from the MODTRAN program, which uses a range of surface parameters (294.2 K, 294.2 K±5 K, 272.2 K, 272.2 K±5 K, 287.2 K, 287.2 K±5 K, 288.2 K, 288.2 K±5 K) and four kinds of atmospheric model (mid-latitude summer atmosphere, mid-latitude winter atmosphere, sub-polar summer atmosphere and American standard atmosphere 1972) as inputs. The daily brightness temperature data of the Channel 4 and Channel 5 of FY-3A/VIRR (1-km resolution) are used to generate the model parameters of Becker's split window inversion algorithm. Second, as a validation of the algorithm, the retrieved VIRR LST is compared with the instrument measurement data in satellite transit period in Dunhuang radiometric calibration and validation test site and MODIS LST of the same period and area. The results show that the error of LST products is-0.17 K and 1.77 K by two validations in Dunhuang site. The two LST products are found to be consistent, and the root mean square error between FY-3A LST and MODIS LST is 2.64 K. By histogram comparison, the two frequency distributions show no difference. Finally, the retrieved daily FY-3A LST is applied to monitor the first high temperature weather process in 2009, indicating two high-value regions: North China (Shijiazhuang, Zhengzhou, Beijing, etc.) and Northwest Territories (Xi'an, etc.). Land surface temperature in some regions exceeds 320.2 K. There are some spatial distribution differences in different urban land types. The profile data of VIRR LST in main cities verify the existence of the phenomenon of urban heat island. And the heat island of industrial mining land is reflected especially clearly in the LST spatial distribution because the vegetation around the industrial mining land is destroyed seriously.These results show VIRR LST production meet the real-time demand of operation. This also would provide scientific basis data for further study of local climate change, and greatly help the operational numerical weather prediction and global change research. -
表 1 FY-3A气象卫星反演陆表温度产品星-地同步验证
Table 1 Synchronization validation between satellite and the earth for FY-3A LST
日期 像元陆表温度/K 0 cm陆表温度平均/K 误差/K 2010-08-14 316.30 316.13 -0.17 2010-08-24 316.70 318.47 1.77 -
[1] Gruza G, Rankova E, Razuvaev V. Indicators of climate change for the Russian federation. Climatic Change, 1999, 42:219-242. doi: 10.1023/A:1005480719118 [2] 王鹏祥, 杨金虎.中国西北近45a来极端高温事件及其对区域性增暖的响应.中国沙漠, 2007, 27(4):649-655. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200704020.htm [3] 马柱国, 符宗斌, 任小波, 等.中国北方年极端温度的变化趋势与区域增暖的联系.地理学报, 2003, 58(增刊):11-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1001.htm [4] 翟盘茂, 潘晓华.中国北方近50a温度和降水极端事件变化.地理学报, 2003, 58(增刊):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1000.htm [5] 龚志强, 王晓娟, 支蓉, 等.中国近58年温度极端事件的区域特征及其与气候突变的联系.物理学报, 2009, 58(6):4342-4353. doi: 10.7498/aps.58.4342 [6] Meehl G A, Karl T, Easterling D R, et al. An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Amer Meteor Soc, 2000, 81(3):413-416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2 [7] Easterling D R, Evans J L, Groisman P Y, et al. Observed variability and trends in extreme climate events: A brief review. Bull Amer Meteor Soc, 2000, 81(3): 417-425. doi: 10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2 [8] 黄丹青, 钱永甫.我国极端温度事件的定义和趋势分析.中山大学学报:自然科学版, 2008, 47(3): 112-116. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200803023.htm [9] 李玲萍, 李庆玉, 李岩瑛.河西走廊东部高温天气气候特征分析.干旱地区农业研究, 2009, 27(2):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200902007.htm [10] 卫捷, 孙建华.华北地区夏季高温闷热天气特征的分析.气候与环境研究, 2007, 12 (3):453-463. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703024.htm [11] 张尚印, 宋艳玲, 张德宽, 等.华北主要城市夏季高温天气气候特征及评估方法.地理学报, 2004, 59(3):383-390. doi: 10.11821/xb200403008 [12] 王迎春, 葛国庆, 陶祖钰.北京夏季高温闷热天气的气候特征和2008夏季奥运会.气象, 2003, 29(9):23-27. doi: 10.7519/j.issn.1000-0526.2003.09.005 [13] 余永江, 郑有飞, 谈建国, 等.近50a来中国大城市体感温度变化.气象科学, 2009, 29(2): 272-276. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200902020.htm [14] 王明星.大气化学 (第二版).北京:气象出版社, 1999. [15] 周淑贞, 束炯.城市气候学.北京:气象出版社, 1994. [16] 张光智, 徐祥德, 王继志, 等.北京及周边地区城市尺度热岛特征及其演变.应用气象学报, 2002, 13(特刊): 41-49. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1004.htm [17] 侯依玲, 陈葆德, 陈伯民, 等.上海城市化进程导致的局地气温变化特征.高原气象, 2008, 27(增刊):131-137. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2008S1017.htm [18] 郭维栋, 孙菽芬.土壤热异常对地表能量平衡影响初探.气象学报, 2002, 60(6):706-714. doi: 10.11676/qxxb2002.084 [19] 张慧智, 史学正, 于东升, 等.中国土壤温度的空间插值方法比较.地理研究, 2008, 27(6):1299-1307. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200806009.htm [20] 周志恩, 蒋维楣, 胡非, 等.气象卫星观测资料的分析在城市区域气象环境研究中的应用.气象科学, 2003, 23(3):292-299. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200303004.htm [21] Dousset B, Gourmelon F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 58: 43-54. http://www.sciencedirect.com/science/article/pii/S0924271603000169 [22] Voogt J A, Oke T R. Thermal remote sensing of urban climates. Remote Sens Environ, 2003, 86: 370-384. doi: 10.1016/S0034-4257(03)00079-8 [23] 宋艳, 余世孝, 李楠, 等.深圳特区表面温度空间分异特征.生态学报, 2007, 27(4):1489-1498. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200704027.htm [24] 丁金才, 张志凯, 奚红, 等.上海地区盛夏高温分布和热岛效应的初步研究.大气科学, 2002, 26(3):412-420. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200203011.htm [25] 申双和, 赵小艳, 杨沈斌, 等.利用ASTER数据分析南京城市地表温度分布.应用气象学报, 2009, 20(4):458-464. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200904010&flag=1 [26] 吴晓, 陈维英.利用FY-1D极轨气象卫星分裂窗区通道计算陆表温度.应用气象学报, 2005, 16(1): 45-53. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050106&flag=1 [27] Kerr Y H, Lagouarde J P, Imberton J, et a1.Accurate land Surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing Environ, 1992, 41:197-209. doi: 10.1016/0034-4257(92)90078-X [28] Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Romete Sensing, 1996, 34(4):892-905. doi: 10.1109/36.508406 [29] 毛克彪.用MODIS影像和劈窗算法反演山东半岛的地表温度.中国矿业大学学报, 2005(1):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200501010.htm [30] 杨军, 董超华.新一代风云极轨气象卫星业务产品及应用.北京:科学出版社, 2010: 215-217. [31] 杨虎, 杨忠东.中国陆地区域陆表温度业务化遥感反演算法及产品运行系统.遥感学报, 2006, 10(4):600-607. doi: 10.11834/jrs.20060488 [32] Becker F, Li Z L. Towards a local split window method over land surface. Int J Remote Sens, 1990, 11(3): 369-393. doi: 10.1080/01431169008955028 [33] Caselles V, Coll C, Valor E. land surface temperature determination in the whole Hapex Sahel area from AVHRR data. Int J Remote Sensing, 1997, 18(5): 1009-1027. doi: 10.1080/014311697218548 [34] Rubio E, Caselles V, Badenas C. Emissivity measurements of several soils and vegetation types in the 8~14 μm wave band: Analysis of two field methods. Remote Sens Environ, 1997, 59(3): 490-521. doi: 10.1016/S0034-4257(96)00123-X [35] Zeng X B, Dickinson R E, Walker A, et al. Derivation and evalustion of global 1-km fractional vegetation cover data for land modeling. J Appl Meteor, 2000, 39(6): 826-839. doi: 10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2 [36] 孙亮, 孙睿, 贾成刚, 等. MODIS数据反演陆表温度劈窗算法比较.北京师范大学学报:自然科学版, 2008, 44(4):434-438. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201302003.htm [37] 唐国利, 任国玉, 周江兴.西南地区城市热岛强度变化对地面气温序列影响.应用气象学报, 2010, 21(6):722-730. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080612&flag=1 [38] 郑祚芳, 范水勇, 王迎春.城市热岛效应对比北京夏季高温的影响.应用气象学报, 2006, 17(增刊):48-53. http://www.cnki.com.cn/Article/CJFDTotal-YYQX2006S1006.htm