Temperature-sounding Microwave Channels for FY-3(02)
-
摘要: 我国新一代极轨业务气象卫星风云三号 (02) 批计划2012年发射。该文利用UWNMS模拟2005年Katrina飓风的结果作为基础数据集,借助VDISORT微波辐射传输模式对风云三号 (02) 批计划装载的微波探测仪器中50~60 GHz和新增的118.75 GHz频点的降水特性进行初步研究。首先通过晴空权重函数匹配,选择出50~60 GHz与118.75 GHz频点匹配关系较好的4对通道。敏感性分析表明:各通道对各种水凝物粒子均很敏感,可用于改进现有业务降水反演算法。分别选取50~60 GHz 4个通道、118.75 GHz 4个通道、50~60 GHz及118.75 GHz全部通道3种不同的通道组合进行反演试验。结果表明:将50~60 GHz及118.75 GHz通道联合起来进行降水反演可提高降水反演的精度,并可以更好地区分降水区与非降水区。Abstract: The new generation of Fengyun polar orbiters FY-3(02) satellite will be launched in 2012. Using Non-hydrostatic Modeling System (UW-NMS) cloud resolving model by University of Wisconsin, in conjunction with the VDISORT microwave radiative transfer model to simulate the upwelling brightness temperatures, the basic atmospheric parameters of Katrina are estimated, and the precipitation characteristics of sounding channels from two oxygen absorption complexes at 50—60 GHz and 118.75 GHz, which will be installed on FY-3(02) satellite are preliminarily analyzed. The two channels are combined to make use of their differential response to absorption and scattering by hydrometeors. To optimize the channel combination, four pairs of channels which show similar weighting functions in clear-sky atmospheric profiles are chosen (i.e., 50.3 GHz and 118.75±5.0 GHz, 51.76 GHz and 118.75±3.0 GHz, 52.8 GHz and 118.75±2.5 GHz, 54.40 GHz and 118.75±1.1 GHz), with the largest differences occurring at the lowest channels as a result of their different sensitivity to moisture that significantly affects observations below 500 hPa. To study the potential use of these frequencies, the relationships between the simulated TBs and the microphysical properties of the UW-NMS simulated precipitating clouds are analyzed. The sensitivity analysis shows that, all channels are very sensitive to hydrometeor species, and they are most sensitive to the graupel, then the snow, followed by the rain. Due to the scattering of the frozen hydrometeors, the TBs of 118.75 GHz decreases more than 50—60 GHz. After that, a Bayesian retrieval framework is used to retrieve the rainfall intensity and vertical structure of hydrometers, and three different sets of frequencies have been chosen to perform the retrieval: Using only the 50—60 GHz channels, using only the 118.75 GHz channels and a combination of all the channels respectively. Then the root mean square (RMS) and the correlation coefficient have been considered to analyze the behavior of the retrieval relative to the columnar liquid/ice water contents of rain, graupel, snow and surface rain rate. The results show that the 118.75 GHz channels are better in retrieving the columnar ice water contents of graupel, the 50—60 GHz channels are better in retrieving the columnar liquid/ice water contents of rain and snow, and the combination of all the channels always presents the highest correlation coefficient and the smallest RMS, so the combination of all channels will improve the precipitation retrieval precision. Then a second set of statistical indexes (correct rate, critical success index, probability of detection, false alarm rate) have been employed to evaluate the rain detection capability, discriminating between the raining and non-raining pixels. The results show that the correct rate and critical success index of all the channels are closer to 1, and the false alarm rate are closer to 0, so the combination of all the channels can better discriminate between the raining and non-raining pixels. After the launch of FY-3(02) satellite, this method will be further verified. And for global applications, more flexible retrieval approaches are required, which should be capable of constraining the algorithm according to the local situation.
-
表 1 3种不同通道组合反演的雨、雪、霰粒子柱总量、降水率与真值之间的相关系数及均方根误差
Table 1 Correlation coefficient and root mean square between the truth and the retrieved water/ice water paths of three hydrometeors (rain, snow and graupel) and the rain rate for the three different sets of frequencies
通道组合 雨粒子 雪粒子 霰粒子 降水率 相关系数 均方根误差
/(kg·m-2)相关系数 均方根误差
/(kg·m-2)相关系数 均方根误差
/(kg·m-2)相关系数 均方根误差
/(mm·h-1)50~60 GHz通道 0.86 0.84 0.97 1.32 0.94 0.09 0.84 5.10 118.75 GHz通道 0.80 0.97 0.95 1.59 0.96 0.07 0.74 6.24 全部通道 0.93 0.60 0.97 1.21 0.97 0.06 0.85 4.82 表 2 3种不同通道组合反演降水的统计参数结果
Table 2 Results in term of statistical analysis on the rain retrieval for three different sets of frequencies
参数 50~60 GHz通道 118.75 GHz通道 全部通道 RC 0.93 0.88 0.94 ICS 0.89 0.83 0.91 DPO 0.96 0.97 0.96 RFA 0.07 0.14 0.05 -
[1] 董佩明, 王海军, 韩威, 等.水物质对云雨区卫星微波观测模拟影响.应用气象学报, 2009, 20(6):682-691. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090605&flag=1 [2] 陈廷娣, 王连仲, 窦贤康. TRMM卫星与机载雷达在降雨反演中的数据对比个例研究.应用气象学报, 2008, 19(4):454-462. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080409&flag=1 [3] 吴庆梅, 程明虎, 苗春生.用TRMM资料研究江淮、华南降水的微波特性.应用气象学报, 2003, 14(2):206-214. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030225&flag=1 [4] 李小青, 吴蓉璋.用GPROF算法反演降水强度和水凝物垂直结构.应用气象学报, 2005, 16(6):705-717. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050693&flag=1 [5] 王小兰, 程明虎, 周凤仙.对流性降水云微波辐射特性.应用气象学报, 2009, 20(3):321-328. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090308&flag=1 [6] Staelin D H, Chen F W, Fuentes A. Precipitation measurements using 183-GHz AMSU satellite observations. IEEE Trans Geosci Remote Sens, 1999, 37(4):2069-2071. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=775034 [7] Staelin D H, Chen F W. Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans Geosci Remote Sens, 2000, 38(5): 2322-2332. doi: 10.1109/36.868889 [8] Gasiewski A J, Staelin D H. Numerical modeling of passive microwave O2 observations over precipitation. Radio Sci, 1990, 25(3): 217-235. doi: 10.1029/RS025i003p00217 [9] Schwartz M J, Barrett J W, Fieguth P W, et al. Observations of thermal and precipitation structure in a tropical cyclone by means of passive microwave radiometry. J Appl Meteorol, 1996, 35: 671-678. doi: 10.1175/1520-0450(1996)035<0671:OOTAPS>2.0.CO;2 [10] Bauer P, Mugnai A. Precipitation profile retrievals usingtemperature-sounding microwave observations. J Geophys Res, 2003, 108(D23), 4730, doi: 10.1029/2003JD003572. [11] Bauer P, Moreau E, Dimichele S. Hydrometeor retrieval accuracy using microwave window and sounding channel observations. J Appl Meteor, 2005, 44: 1016-1032. doi: 10.1175/JAM2257.1 [12] Pinori S, Baordo F, Medaglia C M, et al. On the potential of sub-mm passive MW observations from geostationary satellites to retrieve heavy precipitation over the Mediterranean Area. Advances in Geosciences, 2006, 7: 387-394. doi: 10.5194/adgeo-7-387-2006 [13] Weng F Z. A multi-layer discrete-ordinate method for vector radiativetransfer in a vertically-inhomogeneous, emitting and scatting atmosphere-Ⅰ: Theory. J Quant Spectrosc Radiative Transfer, 1992, 47(1): 19-33. doi: 10.1016/0022-4073(92)90076-G [14] Liebe H J, Rosenkranz P W, Hufford G A. Atmospheric 60 GHz oxygenspectrum: New laboratory measurements and line parameters. J Quant Spectrosc Radiative Transfer, 1992, 48: 629-643. doi: 10.1016/0022-4073(92)90127-P [15] Li J, Wolf W W, Menzel W P, et al. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J Appl Meteor, 2000, 39: 1248-1268. doi: 10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2 [16] Tripoli G J. A nonhydrostatic mesoscale model designed to simulate scale interaction. Mon Wea Rev, 1992, 120:1342-1359. doi: 10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2 [17] Kummerow C, Olson W S, Giglio L. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans Geosci Remote Sensing, 1996, 34:1213-1232. doi: 10.1109/36.536538