Inter-comparision and Application of Atmospheric Humidity Profiles Measured by CFH and Vaisala RS80 Radisondes
-
摘要: 对2010年8月在云南腾冲利用芬兰Vaisala RS80和低温霜点仪 (Cryogenic Frostpoint Hygrometer,CFH) 两种探空仪测量大气湿度的垂直分布进行对比分析,同时比较它们白天和夜间测量误差的差别,并对国产GTS1,RS80和CFH共3种探空仪测量水汽总量与地基GPS遥测结果进行比较。结果表明:RS80湿度测值在整个对流层比CFH测值偏干 (23.7±18.5)%;因太阳辐射白天RS80偏干较夜间更明显,比夜间偏干 (13.5±14.8)%。而在对流层上层向平流层过渡区域内RS80湿度数据基本无效。CFH在低温、低湿环境下对湿度能有效测量,但在湿度较高的对流层低层测值偏高,导致比较中CFH水汽总量平均比GPS遥测的水汽总量偏高 (4.3±2.0) mm (样本数为11),而RS80,GTS1与GPS的水汽总量差别分别是 (0.2±1.4) mm (样本数为12), (-0.2±2.2) mm (样本数为43)。地基GPS遥测的水汽总量对对流层上层至平流层的水汽变化不敏感。由于RS80测量相对湿度在高空偏低,通过RS80相对湿度测值来确定中、高云结果是偏低的,特别是对6000 m以上的高云判别上,RS80相对湿度的探测几乎很难甄别到云的存在。Abstract: Vertical profiles of atmospheric humidity simultaneously measured by balloon-borne Cryogenic Frostpoint Hygrometer (CFH) and Vaisala RS80 radiosonde in Tengchong, Yunnan in August 2010 are analyzed. Currently, CFH is the reference instrument in the measurement of atmosphere water vapor profile. RS80 radiosonde is ever extensively used in the world before the middle of 1990s. The humidity data measured by CFH is used to assess the quality of RS80 radiosonde humidity data. The difference of RS80 radiosonde humidity data in day and night time respectively compared to CFH data is also given in individual inter-comparison. The results have revealed there is a large dry bias produced by the RS80 humidity sensor with average of (23.7±18.5)%, and the daytime dry bias is (13.5±14.8)% larger than that in the nighttime owing to solar radiation heating on the humidity sensor. In addition, RS80 radiosonde is almost incapable of measuring the valuable humidity data in the transition region from upper troposphere to lower stratosphere. For the integrated precipitable water (PW) amounts from the profiles of GTS1, RS80, CFH and their comparisons with GPS measurements, CFH integrated PW is (4.3±2.0) mm (number of samples is 11) higher than that of GPS because that CFH tends to be saturation at moist condition, especially when passes through cloud in lower troposphere, while the PW differences of RS80, GTS1 from the GPS measurements are (0.2±1.4) mm (number of samples is 12) and (-0.2±2.2) mm (number of samples is 43) respectively. The value of GPS PW is not sensitive to the humidity variations in the altitudes above upper troposphere. CFH is demonstrated as an effective instrument measuring water vapor concentration in the circumstance with lower temperature as well as lower humidity, such as in the upper troposphere and lower stratosphere. Owing to dry bias, RS80 radiosonde detects less middle or high clouds than CFH does, especially in the detection of high clouds above 6000 m where the low humidity value from RS80 radiosonde almost cannot indicate the occurrence of cloud. Therefore, the occurrence frequency and altitude of high cloud would be much underestimated if RS80 radiosonde water profiles are used.
-
表 1 RS80和CFH测量平均水汽体积混合比比较 (单位:10-6)
Table 1 Intercomparsion of averaged water vapor concentrations between CFH and Vaisala RS80 radiosonde measurements (unit: 10-6)
高度/km RS80 CFH 混合比±标准差 样本数 混合比±标准差 样本数 0~5 13583±5426 546 15334±6403 540 5~10 2164±1865 542 2335±2044 517 10~15 58±90 550 79±109 485 15~20 10±14 526* 4.7±1.1 382 20以上 135±233 322* 5.0±1.0 192 注:*表示测值已没有意义。 表 2 2010年RS80与CFH在云南腾冲分别对云的观测高度 (单位:m)
Table 2 Inter-comparison of cloud altitudes detected by RS80 and CFH at Tengchong, Yunnan in 2010(unit: m)
日期 低云 中云 高云 CFH RS80 CFH RS80 CFH RS80 08-08 500~1725 3710~4206 08-13 500~2000 749~1826 2000~3875 2155~2596 5875~6067 08-15 500~1624 572~1595 3382~6000 3654~6000 6000~8939 6000~6572 08-17 500~2000 566~2000 2000~3795 2000~3094 7700~8225 08-19 500~2000 1468~2271 2000~4480 3365~4417 5924~6557 7376~8079 08-21 500~2000 500~3391 2000~5387 4179~5070 6075~6557 7037~7170 8331~8343 08-22 685~4393 1700~1751 4977~6157 3933~4073 6523~6694 08-24 500~2000 1661~2439 2000~4969 2888~4931 08-26 500~2081 1871~2013 2510~3622 6180~6788 6449~6500 3926~5200 7105~7181 08-28 523~1676 1394~1460 1933~2897 2324~2690 7376~7937 3099~3276 3629~3843 08-30 500~2000 2000~3805 2657~3766 -
[1] Zhai P, Eskridge R E. Analyses of inhomogeneities in radiosonde temperature and humidity time series. J Climate, 1996, 9: 884-894. doi: 10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2 [2] 李吉明, 孙宜军, 薛蜀云.中华人民共和国气象行业标 (QX /T 36—2005), GTS 1型数字探空仪.北京:中国气象局, 2005. [3] 王冬玫, 张小斌, 王志文, 等.芬兰GPS探空仪与中国L波段探空仪试验数据对比分析.仪器仪表学报, 2008, 28(8):461-464. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-YQYB200712002112.htm [4] 李伟, 邢毅, 马舒庆.国产GTS1探空仪与VAISALA公司RS92探空仪对比分析.气象, 2009, 35(10):97-102. doi: 10.7519/j.issn.1000-0526.2009.10.012 [5] 李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. doi: 10.11898/1001-7313.20110408 [6] Bian J C, Chen H B, Vömel H, et al. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv Atmos Sci, 2011, 28(1):139-146. doi: 10.1007/s00376-010-9170-8 [7] Miloshevich L, Vömel H, Paukkunen A, et al. Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J Atmos Oceanic Technol, 2001, 18:135-156. doi: 10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2 [8] Vömel H, David D, Smith K. Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J Geophys Res, 2007, 112, D08305, doi: 10.1029/2006JD007224. [9] Vömel H, Barnes J E, Forno R N, et al. Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements. J Geophys Res, 2007, 112, D24S37, doi: 10.1029/2007JD008698. [10] Nash J, Oakley T, Vömel H, et al. WMO Intercomparsion of High Quality Radiosonde Systems. Instruments and Observing Methods Report. 2011, 107:91-152. [11] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res, 1992, 97:15787-15801. doi: 10.1029/92JD01517 [12] Wang J, Zhang L. Systematic errors in global radiosonde perceptible water data from comparisons with ground-based GPS measurements. J Climate, 2008, 21:2218-2238. doi: 10.1175/2007JCLI1944.1 [13] Hyland R W, Wexler A. Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Trans, 1983, 89:500-519. https://www.mendeley.com/research-papers/formulations-thermodynamic-properties-saturated-phases-h2o-17315-k-47315-k/ [14] Miloshevich L, Holger V, David N W, et al. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J Geophys Res, 2009, 114, D11305, doi: 10.1029/2008JD011565. [15] 杨红梅, 葛润生, 徐宝祥.用单站探空资料分析对流层气柱水汽总量.气象. 1998, 24(9):8-11. doi: 10.7519/j.issn.1000-0526.1998.09.002 [16] 李延兴, 徐宝祥, 胡新康, 等.应用地基GPS技术遥感大气柱水汽量的实验研究.应用气象学报, 2001, 12(1):61-69. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010107&flag=1 [17] 何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1 [18] 李成才, 毛节泰. GPS地基遥感大气水汽总量分析.应用气象学报, 1998, 9(4):470-471. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980469&flag=1 [19] 向玉春, 陈正洪, 徐桂荣, 等.三种大气可降水量推算方法结果的比较分析.气象, 2009, 35(11):48-54. doi: 10.7519/j.issn.1000-0526.2009.11.006 [20] 柳典, 刘晓阳.地基GPS遥感观测北京地区水汽变化特征.应用气象学报, 2009, 20(3):346-353. doi: 10.11898/1001-7313.20090311 [21] Wang J, Rossow W B. Determination of cloud vertical structure from upper-air obervations. J Applied Meteorology, 1995, 34:2243-2258. doi: 10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2