Response of Rise and Fall in Hulun Lake Wetland to Meteorological and Hydrological Factor Change
-
摘要: 利用1961—2005年呼伦湖湿地的气象及水文资料,基于灰色关联度分析、Mann-Kendall检验及小波分析、回归统计等方法,分析了湿地消长对气象水文因子变化的响应特征。结果表明:年与夏季气候在湿地消长中起主导作用。区域年降水量每增加10 mm,年降水量的直接作用是使湿地水域面积和水位深度分别增加2.6 km2和1.6 cm;年径流量每增加1×108 m3,湿地水域面积和水位深度分别增加4.8 km2和3.0 cm。45年来,湿地消长对影响因子连续变化过程的响应特征具有一致性,特别在20世纪90年代后响应更显著,湿地萎缩加快;气温与降水量变化在湿地水域面积、水位深度消长中的贡献率分别为33.1%与66.9%,22.5%与77.5%,降水量变化起主导作用。湿地消长对影响因子的多时间尺度周期性具有很好的响应。在27年的年代际尺度主周期与11~16年次周期、2~10年年际尺度准周期的叠加作用下,45年来,湿地消长出现了2次减少、1次增加的周期过程,并呈现短周期波动特征。Abstract: With meteorological and hydrological data from 1961 to 2005 in Hulun Lake Wetland, based on gray correlation analysis, Mann-Kendall test, regressive statistics, and wavelet analysis methods, the response models of rise and fall in Hulun Lake Wetland are established by meteorological and hydrological factors. The response characteristics of rise and fall are analyzed under meteorological and hydrological factors change in Hulun Lake Wetland, and references are provided for Hunlun Lake Wetland protecting, resuming and utilizing.Year and summer climate are major roles for the wetland rise and fall, but the water budget of the wetland rise and fall could be reflected completely by year climate. With annual evaporation and runoff fixed, water area and water level depth will respectively increase by 2.6 km2 and 1.6 cm if yearly precipitation increases by 10 mm. Runoff increase of 1×108m3 will lead the water area and water level depth to increase by 4.8 km2 and 3.0 cm respectively, given the evaporation and precipitation unchanged.The coincidence response characteristics are prominent between the wetland rise and fall and the continuous change process of the influential factors from 1961 to 2005.The response is more prominent after the 1990s in particular, when the water resource shortness of the wetland become serious, because the hydrologic environment of the wetland is worsening and the wetland atrophy is faster. The impacting rates of air temperature and precipitation changes on the rise and fall of water area and water level depth are respectively 33.1% and 66.9%, 22.5% and 77.5%, and the precipitation change are dominant.The response of multi-time scale periodic characteristics is prominent between the wetland rise and fall and the influential factors. Their chief periods are all 27 years on the inter-decadal timescale. At the same time, the secondary period (11—13 years) on the inter-decadal timescale and the quasi-period (5—10 years) on the inter-annual timescale are the same for annual precipitation and annual runoff, the secondary period (14—16 years) and the quasi-period (2—7 years) are the same too for annual average air temperature and annual evaporation. Under the overlying action with the chief period and the secondary period, the wetland rise and fall is displayed the period processes of twice increasings and once decreasing from 1961 to 2005. The short period response about quasi-period is prominent between the wetland rise and fall and the influential factors, the wetland rise and fall take on the wave characteristics from 1985 to 2000 in Hulun Lake Wetland.
-
表 1 呼伦湖湿地区域气象与水文站点的位置
Table 1 Location of meteorological and hydrological stations in Hulun Lake Wetland
气象与水文站点 纬度 经度 新巴尔虎右旗气象站 48°40′ N 116°49′ E 新巴尔虎左旗气象站 48°13′ N 118°16′ E 满洲里气象站 49°35′ N 117°19′ E 东旗坤都冷水文站 48°04′ N 117°45′ E 西旗阿拉坦水文站 48°38′ N 116°49′ E 表 2 呼伦湖湿地水域面积、水位深度与自然因素的相关系数及灰色关联度比较
Table 2 Comparison for grey correlation and linear correlation of water area and water level depth to natural factors in Hulun Lake Wetland
因子 时段 水域面积/km2 水位深度/m 相关系数 关联度 相关系数 关联度 气温/℃ 春季 -0.04 0.73 -0.04 0.73 夏季 -0.38** 0.73 -0.35* 0.73 秋季 -0.26 0.75 -0.23 0.74 冬季 0.04 0.76 0.03 0.76 全年 -0.14 0.75 -0.14 0.75 降水量/mm 春季 -0.31* 0.72 -0.31* 0.72 夏季 0.21 0.76 0.20 0.76 秋季 0.09 0.75 0.09 0.74 冬季 -0.50* 0.73 -0.48** 0.73 全年 0.14 0.75 0.14 0.75 蒸发量/mm 春季 0.45** 0.79 0.44** 0.78 夏季 -0.10 0.75 -0.09 0.75 秋季 -0.30* 0.73 -0.28 0.73 冬季 -0.13 0.76 -0.12 0.76 全年 -0.10 0.73 -0.09 0.73 径流量/108m3 全年 0.51** 0.74 0.48** 0.75 注:**表示通过0.01水平的显著性检验,*表示通过0.05水平的显著性检验。 表 3 呼伦湖湿地水域面积5种模型拟合效果比较
Table 3 Simulated effective comparison for five models between water area and influencing factors in Hulun Lake Wetland
模型 湖面面积拟合方程 平均相对误差/% 决定系数 (R2) 线性回归模型 Y=2023.62+1.85X1-0.23X2+0.06X3+9.19X4 3.21 0.2879** 偏回归分析模型 Y=2216.95-10.72X1+0.12X2-0.006X3+4.67X4 3.70 0.1967* Logistic模型 Y=2360/(1+exp (-3.34-0.15X1+0.006X2+0.0002X3-0.104X4)) 3.02 0.2622** 指数模型 Y=2354exp (-0.151+0.0004X1-0.0001X2+0.004X4) 3.26 0.2859** CAR模型 详见式 (1) 0.53 0.9760** 注:**表示通过0.001水平的显著性检验,*表示通过0.01水平的显著性检验。 表 4 呼伦湖湿地水位深度5种模型拟合效果比较
Table 4 Simulated effective comparison for five models between water level depth and influencing factors in Hulun Lake Wetland
模型类型 水位深度拟合方程 平均相对误差/% 决定系数 (R2) 线性回归模型 Y=542.85+0.008X1-0.002X2+0.001X3+0.061X4 0.10 0.2646** 偏回归分析模型 Y=544.24-0.074X1+0.001X2-0.0004X3+0.0313X4 0.11 0.1812* Logistic模型 Y=547/(1+exp (-4.82-0.0015X1+0.001X2-0.0002X3-0.023X4)) 0.09 0.2857** 指数模型 Y=546exp (-0.006+0.0001X4) 0.10 0.2636** CAR模型 详见式 (2) 0.02 0.9720** 注:**表示通过0.001水平的显著性检验,*表示通过0.01水平的显著性检验。 -
[1] Houghton R A, Woodwell G M. Global Climate Change. Sci Am, 1989:36-44. http://www.nature.com/scientificamerican/journal/v260/n4/index.html [2] Kemp D D. Climate change 1995: The science of climate change-contribution of working Group 1 to the second assessment report of the Intergovermental Panel on Climate Change. Progress in Physical Geography, 1997, 21(3): 309-312. [3] Poianik A. Climate change and Northern Prairie wetlands: Simulations of longterm dynamics. Limnology of Oceanography, 1996, 41(5): 871-881. doi: 10.4319/lo.1996.41.5.0871 [4] 秦伯强, 王苏民.呼伦湖的近期扩张及其与全球气候变化的关系.海洋与湖沼, 1994, 25(3):280-287. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199403007.htm [5] 沈大军, 刘昌明.水文、水资源系统对气候变化的影响.地理研究, 1998, 17(4):435-441. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ804.014.htm [6] 张树清, 张柏, 汪爱华.三江平原湿地消长与区域气候变化关系研究.地球科学进展, 2001, 16(6):836-841. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200106016.htm [7] 李翀, 马巍, 史晓新, 等.呼伦湖区水位、盐度变化 (1961—2002年).湖泊科学, 2006, 18(1):13-20. doi: 10.18307/2006.0102 [8] 李翀, 马巍, 叶柏生, 等.呼伦湖水面蒸发及水量平衡估计.水文, 2006, 26(5):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200605012.htm [9] 赵慧颖, 李成才, 赵恒和, 等.呼伦湖湿地气候变化及其对水环境的影响.冰川冻土, 2007, 29(5):795-801. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200705019.htm [10] 李凤霞, 伏洋, 肖建设, 等.长江源头湿地消长对气候变化的响应.地理科学进展, 2011, 30(1):49-56. doi: 10.11820/dlkxjz.2011.01.006 [11] 地方志编写委员会.呼伦湖志.海拉尔:内蒙古文化出版社, 1998:4-25. [12] 王文华.浅析呼伦湖水位变化对水质的影响.内蒙古水利, 2005(3):3-5. http://www.cnki.com.cn/Article/CJFDTOTAL-NMSL200503000.htm [13] 褚永海, 李建成, 姜卫平, 等.利用Jason21数据监测呼伦湖水位变化.大地测量与地球动力学, 2005, 25(4):11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200504002.htm [14] 那日苏, 李云鹏, 李兴华, 等.呼伦湖区域生态变化及其影响因子的观测分析.气象, 2006, 32(专刊):25-30. http://cdmd.cnki.com.cn/Article/CDMD-10052-1015625966.htm [15] 吕锋, 刘翔, 刘泉.七种灰色系统关联度的比较研究.武汉工业大学学报, 2000, 22(2):41-43. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200002013.htm [16] 唐启义, 冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社, 2002:460-465;491-495. [17] 邹旭恺, 张强.近半个世纪我国干旱变化的初步研究.应用气象学报, 2008, 19(6):679-687. doi: 10.11898/1001-7313.20080607 [18] 杨素英, 王谦谦, 孙凤华.中国东北南部冬季气温异常及其大气环流特征变化.应用气象学报, 2005, 16(3):334-344. doi: 10.11898/1001-7313.20050308 [19] 孙利, 沈柏竹, 安刚.中国东北地区地表干湿状况的变化及趋势分析.应用气象学报, 2003, 14(5):542-552. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030568&flag=1 [20] 赵宗慈. IPCC科学评估报告研究进展.应用气象学报, 1999, 10(增刊):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX9S1.013.htm [21] 王绍武, 赵宗慈.未来50年中国气候变化趋势的初步分析.应用气象学报, 1995, 6(3):333-342. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950352&flag=1 [22] 李万源, 正安, 敏红, 等.中蒙干旱半干旱区冬、夏季地面气温时空变化特征分析[II].高原气象, 2006, 25(4):624-632. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200604008.htm [23] 孙卫国, 程炳岩, 李荣.黄河源区径流量与区域气候变化的多时间尺度相关.地理学报, 2009, 64(1):117-127. doi: 10.11821/xb200901012 [24] 吴昊, 姜燕敏, 茅军念.丽水汛期降水多时间尺度演变特征.暴雨灾害, 2010, 29(2):176-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201002015.htm