Wind Retrieval Simulation in Tropical Cyclone for FY-3 Dual-Frequency WFR
-
摘要: 基于大气辐射传输理论分别建立Ku波段和C波段的降雨模型,模拟热带气旋降雨区洋面的雷达回波并反演了洋面10 m风场,用于研究降雨对测风的影响以及风云三号双频风场雷达 (WFR) 的测风能力。分析表明:回波的衰减或增强取决于降雨衰减项和后向散射项的相对大小;热带气旋的降雨使反演风速偏小,风向精度降低,Ku波段相对于C波段更易受影响,在高风速 (超过30 m·s-1) 条件下,可达5~20 m·s-1的负风速偏差。反演结果表明:双频反演的新方法能够结合Ku波段与C波段的优势,双频最大似然估计 (MLE) 方法在分辨率上优于C波段单频反演,相对Ku单频反演能降低降雨对测风的衰减作用,结合双频MLE方法和C波段单频反演优势的分区反演方法可以显著减小降雨偏差,提高风速反演精度,在有风云三号湿度计同步观测的条件下,是提高热带气旋降雨区测风精度的有效手段。Abstract: Tropical cyclone is one of the primary disastrous synoptic systems in China. With the continuous observation, global coverage and the ability to penetrate through precipitation layer, microwave sensors on polar orbit satellites can provide more precise observations of the tropical cyclone location and intensity for marine extreme weather forecasting, which will compensate for the shortage of conventional observations. The FY-3 satellite microwave scatterometer, named Wind Field Radar (WFR), is the only way to measure ocean vector winds (OVW).Compared with single-frequency scatterometer, dual-frequency scatterometer has advantages in higher spatial resolution and better response to winds in extreme weather conditions, where high winds are usually associated with high rain rates. The Jet Propulsion Laboratory (JPL) has developed a conceptual design for a Dual Frequency Scatterometer (DFS) in the Extended Ocean Vector Winds Mission put forward in 2007. The concept of Rotating Fan Beam Scatterometer which will be extended to dual-frequency mode has been studied under ESA. The WFR installed on FY-3 satellite which will be launched in 2016 is designed to use the dual-frequency and dual-polarization time-sharing observation pattern.Rain perturbations result from volume scattering and attenuation by precipitation in the atmosphere, as well as changes of sea surface roughness by impinging rain drops. Few studies which investigate effects of rain on Ku-band and C-band scatterometer data indicate that the impact of rain to sea surface is a complex phenomenon not yet fully understood, and it's not dominating in high wind and strong rain fall areas. Therefore, changes in surface roughness are not considered here.The purpose of this study is to investigate the potential of the WFR proposed to fly aboard FY-3 satellite to measure OVW in rain fall areas of Typhoon Ivan. A theoretical model based on radiation transfer equation including rain attenuation and scattering, has been developed to quantify the modification by rain of the measured backscatter. Based on the simulated normalize radar cross section (NRCS) dataset generated by forward model, the impact on the retrieved winds has been analyzed, and the dual-frequency retrieval algorithm has been firstly studied. Analysis shows that changes of contaminated NRCS briefly depend on relative size of volume scattering item and attenuation item. Wind vectors measured at Ku-band can be more severely altered by rain than those at C-band. Precipitation in tropical cyclone can significantly degrade the OVW accuracy. Retrieval results show that new methods combined Ku-band and C-band have higher spatial resolution than C-band retrieval, and better performance in rain fall region than Ku-band retrieval. Especially, partitioned wind retrieval technique can significantly reduce the rainfall error, is an effective way to improve the wind retrieval accuracy in tropical cyclone with the synchronous observation by microwave humidity sounder (MWHS) aboard FY-3 satellite.
-
Key words:
- rain model;
- wind field;
- microwave scatterometer;
- radiation transfer
-
图 5 加噪后两波段反演风速和模式风速之差与模式风速间的关系
(a) C波段加系统噪声,(b) C波段加地球物理噪声,(c) Ku波段加系统噪声,(d) Ku波段加地球物理噪声
Fig. 5 The distinction between noises added retrieved wind speed and simulated wind speed at C and Ku-band versus real wind speed (a) system-noise added to C-band, (b) geo-noise added to C-band, (c) system-noise added to Ku-band, (d) geo-noise added to Ku-band
-
[1] 刘喆, 韩志刚, 赵增亮, 等.利用ATOVS反演产品分析"云娜"台风.应用气象学报, 2006, 17(4):473-477. doi: 10.11898/1001-7313.20060413 [2] 郭杨, 卢乃锰, 谷松岩.毫米/亚毫米波探测大气温度和湿度的通道选择.应用气象学报, 2010, 21(6):716-723. doi: 10.11898/1001-7313.20100608 [3] 谷松岩, 王振占, 李靖, 等.风云三号A星微波湿度计主探测通道辐射特性.应用气象学报, 2010, 21(3): 335-342. doi: 10.11898/1001-7313.20100309 [4] 游然, 卢乃锰, 邱红, 等.用PR资料分析热带气旋卡特里娜降水特征.应用气象学报, 2011, 22(2):203-213. doi: 10.11898/1001-7313.20110209 [5] 杜明斌, 杨引明, 杨玉华, 等.FY-3A微波资料偏差订正及台风路径预报应用.应用气象学报, 2012, 23(1):89-95. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120110&flag=1 [6] Draper D W, Long D G. Simultaneous wind and rain retrieval using seawinds data. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1411-1423. doi: 10.1109/TGRS.2004.830169 [7] Hilburn K A, Wentz F J, Smith D K, et al. Correcting active scatterometer data for the effects of rain using passive radiometer data. Journal of Applied Meterology and Climatology, 2005, 45: 382-398. doi: 10.1175/JAM2357.1 [8] Fernandez D E, Carswell J R, Frasier S, et al. Dual-polarized C-and Ku-band ocean backscatter response to hurricane-force winds. J Geophys Res, 2006, 111: 1-17. doi: 10.1029/2005JC003048/full#footer-citing [9] Nie C, Long D G. A C-band wind/rain backscatter model. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 621-631. doi: 10.1109/TGRS.2006.888457 [10] Nie C, Long D G. A C-band scatterometer simultaneous wind/rain retrieval method. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3618-3631. doi: 10.1109/TGRS.2008.922146 [11] 杨吉龙, 张雪虎, 陈秀万, 等.降雨影响散射计测风的初步研究.遥感技术与应用, 2005, 20(1): 157-161. doi: 10.11873/j.issn.1004-0323.2005.1.157 [12] 张亮, 黄思训, 钟剑, 等.基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用.物理学报, 2010, 59(10): 7478-7490. doi: 10.7498/aps.59.7478 [13] Laupattarakasem P, Alsweiss S, El-Nimri S, et al. Improved high wind speed retrievals using AMSR and the next generation NASA dual frequency scatterometer. MicroRad, 2010, 11: 134-139. http://ieeexplore.ieee.org/document/5559575/?reload=true [14] Lin C C, Rommen B, Wilson J J W. An analysis of a rotating, range-gated, fanbeam spaceborne scatterometer concept. Geoscience and Remote Sensing, 2000, 38(5):2114-2121. doi: 10.1109/36.868870 [15] Tripoli G J. A nonhydrostatic mesoscale model designed to simulate scale interaction. Mon Wea Rev, 120:1342-1359. doi: 10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2 [16] Donnelly W J, Carswell J R, McIntosh R E, et al. Revised ocean backscatter models at C and Ku band under high-wind conditions. J Geophys Res, 1999, 104: 11485-11497. doi: 10.1029/1998JC900030 [17] Tournadre J, Quilfen Y. Impact of rain cell on scatterometer data: 1.Theory and modeling. J Geophys Res, 2003, 108: 1-14. doi: 10.1029/2002JC001428/full [18] 乌拉比, 穆尔.微波遥感 (第一卷)——微波遥感基础和辐射测量学.北京:科学出版社, 1988:140-143. [19] Haynes J M, Marchand R T, Luo Z, et al. A multipurpose radar simulation package: QuickBeam. Bull Amer Meteor Soc, 2007, 88: 1723-1727. doi: 10.1175/BAMS-88-11-1723 [20] 解学通, 方裕, 陈晓翔, 等.基于最大似然估计的海面风场反演算法研究.地理与地理信息科学, 2005, 21(1): 30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200501009.htm