The Moving Tendency of Holdridge Life Zone with Its Dry and Wet Climate Changes of Gannan Meadow in Recent 40 Years
-
摘要: 利用Holdridge生命地带系统对1971—2010年甘南草原的Holdridge生命地带偏移趋势及干湿变化进行分析,发现甘南草原目前仍属于青藏高原高寒植被地区的亚高山高寒草甸生命地带,但由于甘南草原生物温度明显升高,甘南草原南部和北部降水量呈现不同的变化趋势,位于青藏高原边坡地带的甘南草原的Holdridge生命地带距平均中心的偏移趋势逐年增大,甘南草原生态系统的稳定性在减弱;甘南草原潜在蒸散率以0.02/10 a~0.03/10 a趋势上升,其中以玛曲上升最明显,达0.03/10 a;20世纪90年代后,甘南草原呈明显的暖干化趋势,其中以位于南部的碌曲、玛曲变化最为明显,碌曲已由极湿润区转变为湿润区;玛曲有从极湿润区向湿润区过渡的趋势。影响甘南草原潜在蒸散率上升的主要气候因子是温度,其次为降水和空气湿度,温度上升是甘南草原暖干化的主要原因。
-
关键词:
- 甘南草原;
- Holdridge生命地带;
- 偏移趋势;
- 暖干化
Abstract: Gannan meadow lies in the south-west of Gansu Province, on the northeast border region of Tibet Plateau. Gannan meadow is the core region of the important water source supply area of the Yellow River, which provides a natural defense for the upper reaches, playing a unique role in the water source and eco-environmental security of the Yellow River Basin.Owing to the climate change and the artificial sabotage, the production performance and ecology function of Gannan meadow shows an obvious declining trend in recent years, the grassland degeneration and deserting trend are accelerated, and the phenological of herbage shows an obvious earlier trend. The ecology and environment of Gannan meadow has obviously changed. The Holdridge life zone system is a common used method to study the relation of the vegetative cover and climate, which has an obvious significance of physics and biology. It is widely used in the study of ecology environment, the dry and wet climate changes, the climate regionalization and so on.Most of the meadows in Gannan Plateau are distributed in Hezuo, Xiahe, Luqu and Maqu, so 4 places are selected as representative area to study the moving tendency of Holdridge life zone and dry and wet climate changes of Gannan meadow. Based on the meteorological data, the method of Holdridge life zone is used to analyze the moving tendency of Holdridge life zone and the dry and wet climate changes of Gannan meadow during 1971—2010. The results show that life zone of Gannan meadow still belongs to the subalpine meadow of Tibet Plateau alpine vegetation system. But impacted by the global climate change, the temperature of Gannan meadow increases obviously with the tendency ratio of 0.44—0.46℃ every decade, meanwhile the bio-temperature has increased by 0.23—0.27℃ every decade, too. The variety of precipitation shows a different trend between the northern and southern in Gannan meadow, the moving tendency of Holdridge life zone is diverging from the mean center, and the stability of the Gannan meadow ecosystem is attenuating.The Holdridge REPof Gannan meadow shows an obvious ascending tendency in the rate of 0.02—0.03 per decade. After the 1990s, the climate of Gannan meadow shows a warm-drying trend, which is more obvious in the southern of Gannan meadow. The humidity degree of Luqu has changed to humid from the perhumid, and Maqu is in the same transition, too. The most important climatic factor for the Holdridge REPincreasing is the temperature, and then is the precipitation and the air humidity.The temperature rising plays a very important role in the warm-drying trend of Gannan meadow.Considering the complexity of the environment and the fragility of the ecology system in the border area of Tibet Plateau, the impact of this change on ecology and environment of Gannan meadow still needs further study.-
Key words:
- Gannan meadow;
- Holdridge life zone;
- moving tendency;
- warm-drying trend
-
表 1 甘南草原RPE的年代际变化
Table 1 Decades variance of RPE in Gannan meadow
站点 1971—1980年 1981—1990年 1991—2000年 2001—2010年 变化趋势/(10 a)-1 合作 0.54 0.53 0.58 0.61 0.03* 夏河 0.73 0.63 0.71 0.75 0.02 碌曲 0.46 0.44 0.54 0.51 0.03* 玛曲 0.37 0.38 0.42 0.45 0.03** 注:*表示超过0.05显著性水平,**表示超过0.01显著性水平,下同。 表 2 RPE与各气候因子的相关系数
Table 2 Correlation coefficients between RPE and climatic factors
站点 平均温度 最高温度 最低温度 降水量 日照时数 风速 水汽压 相对湿度 合作 0.350* 0.364* 0.240 -0.892** 0.181 -0.680 0.085 -0.324* 夏河 0.276 0.290 0.250 -0.104 -0.093 0.276 0.341* 0.157 碌曲 0.340* 0.412* 0.211 -0.871** -0.134 0.202 0.145 -0.242 玛曲 0.531** 0.530** 0.404** 0.023 0.246 0.045 0.192 -0.291 -
[1] 徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2006, 17(6): 756-772. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606124&flag=1 [2] 徐维新, 刘晓东.青藏高原植被对全球变暖响应的区域特征.高原气象, 2009, 28(4): 723-730. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904001.htm [3] 李红梅, 马玉寿, 王彦龙.气候变暖对青海高原地区植物物候期的影响.应用气象学报, 2010, 21(4): 500-504. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100414&flag=1 [4] 除多, 德吉央宗, 普布次仁, 等.西藏藏北高原典型植被生长对气候要素变化的响应.应用气象学报, 2007, 18(6): 832-839. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200706125&flag=1 [5] 杜军.藏北牧草青草期的气候变化特征分析.应用气象学报, 2006, 17(1): 29-36. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060105&flag=1 [6] 牛涛, 刘洪利, 宋燕, 等.青藏高原气候由暖干到暖湿时期的年代际变化特征研究.应用气象学报, 2005, 16(6): 763-771. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050699&flag=1 [7] 刘兴元, 陈全功, 王永宁.甘南草原退化对生态安全与经济发展的影响.草业科学, 2006, 23(12):39-42. doi: 10.3969/j.issn.1001-0629.2006.12.010 [8] 戚登臣, 陈文业, 郑华平, 等.甘南黄河上游水源补给区"黑土滩"型退化草地现状、成因及综合治理对策.中国沙漠, 2008, 28(6):1058-1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200806010.htm [9] 姚玉璧, 邓振镛, 尹东, 等.黄河重要水源补给区甘南高原气候变化及其对生态环境的影响.地理研究, 2007, 26(4): 844-852. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711010032.htm [10] 王建兵, 王振国, 吕虹.黄河重要水源补给区草地退化的气候背景分析——以玛曲县为例.草业科学, 2008, 25(4):23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX200804005.htm [11] 康悦, 李振朝, 田辉, 等.黄河源区植被变化趋势及其对气候变化的影响过程研究.气候与环境研究, 2011, 16(4):505-512. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201104012.htm [12] 王建兵, 汪治桂.玛曲草地垂穗披碱草物候变化及影响因子.应用气象学报, 2011, 22(4):493-497. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110412&flag=1 [13] Holdridge L R. Determination of world plant formations from simple climatic data.Science, 1947, 105:367-368. doi: 10.1126/science.105.2727.367 [14] Holdridge L R.Life Zone Ecology.San Jose, Costa Rica:Tropical Science Center, 1967. [15] 孟猛, 倪健, 张治国.地理生态学的干燥度指数及其应用评述.植物生态学报, 2004, 28(6):853-861. doi: 10.17521/cjpe.2004.0111 [16] 毛飞, 孙涵, 杨红龙.干湿气候区划研究进展.地理科学进展, 2011, 30(1):17-26. doi: 10.11820/dlkxjz.2011.01.002 [17] 张新时.研究全球变化的植被-气候分类系统.第四纪研究, 1993, 5(2):157-169. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199302005.htm [18] 张新时, 杨奠安, 倪文革.植被的PE (可能蒸散) 指标与植被气候分类 (三):几种主要方法与PEP程序介绍.植物生态学与地植物学学报, 1993, 17(2):97-109. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB198901000.htm [19] 范泽孟, 岳天祥, 田永中.中国Holdridge生命地带平均中心的时空分布及其偏移趋势.生态学报, 2004, 24(7):1380-1387. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200407010.htm [20] 巩祥夫, 刘寿东, 钱拴.基于Holdridge分类系统的内蒙古草原类型气候区划指标.中国农业气象, 2010, 31(3):384-387. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201003012.htm [21] 胥晓, 苏智先, 杨奠安.未来气候变化对四川盆地生命地带的影响模拟.生态学杂志, 2004, 23(4):192-196. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200404039.htm [22] 康慕谊, 朱源.秦岭山地生态分界线的论证.生态学报, 2007, 27(7):2774-2784. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200707016.htm [23] 李轶冰, 杨改河, 王得祥.江河源区四十多年来干湿变化分析.西北农林科技大学学报:自然科学版, 2006, 34(3):73-77. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200603016.htm