An Icing Conductor Meteorological Model Based on Estimating the Visibility in Fog Condition
-
摘要: 在总结分析导线覆冰模型理论框架及其影响导线覆冰增长强度的主要气象因子的基础上,根据四川省二郎山观冰站2006年1月—2009年3月的覆冰观测资料和同期常规气象资料,分析发现覆冰密度仅与气温相关显著,运用非线性回归分析建立了导线覆冰密度模型;利用能见度与液态水含量的转换关系估算了空气中的液态水含量及其输送指标,在此基础上建立了一个以气温、风速等常规气象观测要素为参数的导线覆冰模型,以便于工程应用。对模型拟合结果进行分析,实测冰厚和拟合冰厚之间的相关系数为0.8340,拟合冰厚的均方根误差为28.61 mm。Abstract: By using the daily icing data of Erlangshan Mountains in Sichuan Province during three winter seasons provided by Southwest Electric Power Design Institute and related meteorological data, methods of correlation analysis, regression analysis are used to study the meteorological factors and icing index associated with the icing over Erlangshan Mountains. From the view of physical concept, the main meteorological factors influencing the strength of icing conductor and the microscopic process of conductor icing are analyzed by the fluid mechanics and thermodynamic principles. The theoretical framework of the rime icing conductor model and the glaze icing conductor model are built. By analyzing icing data and conventional meteorological data, it is found that the icing density is not well correlated with other meteorological elements except for temperature. An icing density model is established by the method of nonlinear regression analysis whose fitting correlation ratio is 0.5652. This density model can reflect the real icing density. According to the relationship between the visibility, extinction coefficient and liquid water, the liquid water content and its transportation can be estimated by the visibility.To choose the most proper scheme for Sichuan mountain climate characteristics, liquid water content estimated by different model is compared using observed data. Combined with the observed icing data, Kunkel scheme is selected for fitting test. As a result, it is found there is a good correlation between the growth of icing thickness and the liquid water content. The conductor icing thickness is decomposed into the rime icing which is formed by horizontal droplet and the glaze icing formed by precipitation. An icing process efficiency index is defined for further transformation of the theoretical models of conductor icing.From physical significance analysis, temperature and wind are main influencing factors of the icing process efficiency index. But the icing process efficiency index is not significantly correlated with temperature and it is related to the wind speed with exponential relationship. Based on these results, an icing conductor model is established to achieve the purpose of engineering application. From the analysis of the model fitting results, this icing conductor model can reflect the actual icing conductor on the whole, especially reflecting the trend well. The correlation coefficient between the icing thickness and fitting thickness is 0.8340, and the mean square error of icing thickness is 28.61 mm.
-
Key words:
- visibility;
- liquid water;
- the icing conductor model
-
表 1 若干能见度与消光系数参数化方案
Table 1 Comparison of different visibility and specific extinction parameterization schemes
表 2 文献[29]所列成都液态水含量观测值与各能见度反演方案估算值的对比
Table 2 Comparison of observed liquid water (from reference[29]) and estimated visibility by inversion programs
实测能见度/m 实测液态水含量
/(g·m-3)Kunkel方案
/(g·m-3)Eldridge方案
/(g·m-3)Pinnick方案
/(g·m-3)Tomasi方案
/(g·m-3)50 0.200 0.036 0.023 0.010 0.042 100 0.024 0.017 0.008 0.003 0.015 200 0.010 0.008 0.003 0.001 0.005 500 0.008 0.003 0.001 0.000 0.001 1000 0.003 0.001 0.000 0.000 0.001 10000 0.001 0.000 0.000 0.000 0.000 -
[1] 甘凤林, 马涛, 黄金花.导线覆冰对架空输电线路结构的影响.华北电力技术, 2008, 8:5-7. doi: 10.3969/j.issn.1003-9171.2008.02.002 [2] 张岩, 叱志祥, 张国彦.达坂山导线覆冰与气象条件的关系.青海电力, 2005, 24(1):33-36. http://www.cnki.com.cn/Article/CJFDTOTAL-QHDL200501009.htm [3] 殷水清, 赵珊珊, 王遵亚, 等.全国电线结冰厚度分布及等级预报模型.应用气象学报, 2009, 20(6):722-728. doi: 10.11898/1001-7313.20090610 [4] 吴素良, 范建勋, 姜创业, 等.兰州至关中电线积冰与导线线径及高度关系.应用气象学报, 2010, 21(1):63-69. doi: 10.11898/1001-7313.20100108 [5] 吴素良, 蔡新玲, 何晓媛, 等.陕西省电线积冰特征.应用气象学报, 2009, 20(2):247-251. doi: 10.11898/1001-7313.20090215 [6] 张国庆, 张加昆, 祁栋林, 等.青海东部电线积冰的初步观测分析.应用气象学报, 2006, 17(4):508-510. doi: 10.11898/1001-7313.20060419 [7] Imai I. Studies on ice accretion. Researches on Snow and Ice, 1953, 3(1):35-44. https://www.researchgate.net/publication/291875692_Studies_on_ice_accretion [8] Lenhard R W. An indirect method for estimating the weight of glaze on wires. Bull Amer Meteor Soc, 1955, 36(3):1-5. https://www.researchgate.net/publication/291875690_An_indirect_method_for_estimating_the_weight_of_glaze_on_wires [9] Goodwin E J, Mozer J D, Di Gioia A M. Predicting Ice and Snow Loads for Transmission Lines. Proceedings, First IWAIS, 1983:267-273. [10] Makkonen L. A model of icicle growth. J Glaciol, 1988, 34: 64-70. doi: 10.1017/S0022143000009072 [11] Maeno N, Makkonen L, Nishimura K, et al. Growth rates of icicles. Journal of Glaciology, 1994, 1(40): 319-326. http://adsabs.harvard.edu/abs/1994JGlac..40..319M [12] Makkonen Lasse. Modeling power line icing in freezing precipitation. Atmospheric Research, 1998, 46:131-142. doi: 10.1016/S0169-8095(97)00056-2 [13] 孙才新, 蒋兴良, 熊启新, 等.导线覆冰及其干湿增长临界条件分析.中国电机工程学报, 2003, 23(3):141-145. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200303030.htm [14] Chaine P M, Casfonguay G. New Approach to Radial Ice Thickness Concept Applied to Bundle-like Conductors//Industrial Meteorology: Study 4. Toronto: AES, Environment Canada, 1974. [15] 刘和云, 周迪, 付俊萍, 等.导线雨淞覆冰预测简单模型的研究.中国电机工程学报, 2001, 21(4):44-47. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200104009.htm [16] 张怀孔.滇东及滇东北地区电线覆冰模型研究.电力勘测设计, 2007, 4:40-42. doi: 10.3969/j.issn.1671-9913.2007.03.011 [17] 廖玉芳, 段丽洁.湖南电线覆冰厚度估算模型研究.大气科学学报, 2010, 33(4):395-400. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201004001.htm [18] 周绍毅, 苏志, 秦军, 等.基于覆冰模型和GIS的广西输电线路覆冰区划分研究.广西电力, 2010, 33(2): 11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDL201002005.htm [19] 谭冠日.电线积冰若干小气候特征的讨论.气象学报, 1982, 40(1):13-23. doi: 10.11676/qxxb1982.002 [20] 江祖凡.电线积冰增长速度的研究.科学通报, 1983, 15:928-931. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198315009.htm [21] 中国气象局.地面气象观测规范.北京:气象出版社, 2003. [22] 罗宁, 文继芬, 赵彩, 等.导线积冰的云雾特征观测研究.应用气象学报, 2008, 19(1):91-95. doi: 10.11898/1001-7313.20080114 [23] Macklin W C. The density of structure of ice formed by accretion. Quarterly Journal of the Royal Meteorological Society, 1962, 88:30-35. doi: 10.1002/(ISSN)1477-870X [24] 林云, 孙向明, 张小丽, 等.深圳市大气能见度与细粒子浓度统计模型.应用气象学报, 2009, 20(2):252-256. doi: 10.11898/1001-7313.20090216 [25] Kunkel B A. Parameterization of droplet terminal velocity and extinction coefficient in fog models. J Climate Apply Meteor, 1984, 23: 34-41. doi: 10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2 [26] Eldridge R G. The relationship between visibility and liquid water content in fog. Atmos Sci, 1971, 28: 1183-1186. doi: 10.1175/1520-0469(1971)028<1183:TRBVAL>2.0.CO;2 [27] Pinnick R G, Hoihjelle D L, Fernandez G, et al. Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. Atmos Sci, 1978, 35: 2020-2032. doi: 10.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2 [28] Tomasi C, Tampieri F. Features of the proportionality coefficient in the relationship between visibility and liquid water content in haze and fog. Atmosphere, 1976, 14: 61-76. https://www.mendeley.com/research-papers/features-proportionality-coefficient-relationship-between-visibility-liquid-water-content-haze-fog/ [29] 乐时晓.能见度与液态水含量的实验.成都电讯工程学院学报, 1984(增刊):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX1984S1003.htm