The Low Frequency Oscillation and Circulation Characteristics of Cold Rainy Weather in Guangdong
-
摘要: 为了做好广东2—3月低温阴雨的中期与延伸期预报,该文分析了1953—2011年广州低温阴雨年景变化与广东低温阴雨年景变化的关系,并采用小波分析、相关分析等方法探讨了12月—次年4月广州逐日气温的低频振荡及与低温阴雨的关系。结果表明:广州低温阴雨的年景变化与广东年景一致的相同率达94.9%(56/59)。轻度低温阴雨年份,12月—次年4月广州逐日气温主要存在8.0~18.3 d显著周期,而中等及严重年份主要存在10.1~28.4 d及30~89.6 d的振荡。2—3月长低温阴雨主要与18 d以上的周期振荡有关,尤其与45 d以上的季节内振荡强度变化密切相关。利用典型个例的合成分析,建立了长低温阴雨30~64 d季节内振荡的天气概念模型,它们反映了长低温阴雨回暖—降温—开始—维持—结束的大气环流演变特征,其中乌拉尔山—贝加尔湖以西的阻塞高压可作为广东出现长低温阴雨的500 hPa前兆信号。Abstract: In order to predict cold rainy weather on medium-term and extended range during February—March in Guangdong, the relationship between annual prospect of cold rainy weather during 1953—2011 in Guangdong and that in Guangzhou, and the relationship between low-frequency oscillation of Guangzhou daily temperature and cold rainy weather are analyzed from December to next April with wavelet transform and correlation analysis. The result shows that the similar ratio between the annual prospect of Guangzhou cold rainy weather and that of Guangdong is 94.9%(56/59). In mild year of cold rainy weather, Guangzhou daily temperature exhibits quasi-periodic oscillations of 8.0—18.3 days, 10.1—28.4 days and 30—89.6 days for middle and severe year, respectively.The long cold rainy weather during February—March has mainly close relationship with the intraseasonal oscillation with period more than 18 days, especially with the oscillation intensity more than 45 days. The weather concept model of long cold rainy weather with intraseasonal oscillation of 30—64 days is set up based on composite analysis of typical cases.They reflect the evolution characteristics of atmospheric circulation of warmer—cooling—starting—maintenance—ending period of long cold rainy weather. During warmer—cooling—starting period, the blocking high in Ural Maintain and west of Baikal Lake at 500 hPa geopotential height field is maintained, the South China is controlled by straight and fluctuant westerly from weak ridge at warmer period and obvious negative anomalies of height field, the Mongolian High gradually enhances and moves southward in ground, and the South China is controlled by enormous cold pressure ridge from weak trough.The stronger cold air moves southwards and weak cold air continuously supplements. All of the above lead to strong temperature drop and the start of cold rainy weather. When the blocking high in Ural Mountain—west of Baikal Lake is weakened, an obvious ridge maintains, the South China is still controlled by straight and fluctuant westerly, the weak cold air is continuously supplement, the cold rainy weather maintained. When Ural Mountain—north of Baikal Lake controls by weak trough, the South China is controlled by weak ridges at 500 hPa and surface which moving eastwards, the cold rainy weather ends. So the blocking high in Ural Mountain—west of Baikal Lake can be regarded as 500 hPa precursor of cold rainy weather in Guangdong. When this precursor stably maintains, the straight and fluctuation westerly influences the South China, Mongolian High gradually intensifies and move southwards at surface, the long cold rainy weather in Guangdong can be predicted.
-
图 1 1953—2011年2—3月广州最长一段低温阴雨日数的逐年变化 (a) 及与12月—次年4月广州逐日气温不同频率的小波功率谱的相关分布 (b)
(图 1a中实横线代表历年平均值为8.3 d, 虚线为高斯九点平滑滤波;图 1b中粗、细断线分别表示0.10和0.05的显著性水平)
Fig. 1 The number of the longest cold rainy weather day from February to March during1953—2011(a) and its correlation with wavelet power spectrum of Guangzhou daily temperature at different frequency from December to the next April (b)
( the horizontal solid line denotes 8.3 d, the mean number of the longest cold rainy weather day from February to March during 1953—2011, and dashed line denotes smoothed filtered by 9-point Gaussian smoothing in Fig. 1a; the thin and thick long-dashed lines denote the level of 0.10 and 0.05, respectively in Fig. 1b)
图 2 长低温阴雨季节内振荡的500 hPa高度场位相2~9的合成场 (粗线) 及距平场 (细线) 分布(单位:dagpm, 阴影区表示正距平)
Fig. 2 The composition field (thick line) and anomalies (thin line) of 500 hPa height field (unit: dagpm) for phase 2—9 associated with intraseasonal oscillation of long cold rainy weather(the shaded denotes the anomaly is greater than 0 )
表 1 广东各部低温阴雨的强度规定
Table 1 The regulation of cold rainy weather intensity for different regions of Guangdong
位置 强度 2月下旬 (北部) 或2月 (中南部)
低温阴雨日数/d3月低温阴雨日数/d 2—3月最长一段低温阴雨日数/d 北部
(韶关)重 ≥7.0 ≥13.0 ≥13.0 中 3.0~6.9 9.0~12.9 6.5~12.9 轻 < 3.0 < 9.0 < 6.5 中部
(广州)重 ≥14.0 ≥7.0 ≥ 11.0 中 8.1~13.9 3.1~6.9 6.0~10.9 轻 ≤8.0 ≤3.0 < 6.0 南部
(阳江)重 ≥12.0 ≥ 4.7 ≥ 9.0 中 7.1~11.9 1.7~4.6 5.0~8.9 轻 ≤7.0 ≤1.7 < 5.0 表 2 1953—2011年广州低温阴雨年景及12月—次年4月逐日气温的主要振荡周期
Table 2 The annual intensity of Guangzhou cold rainy weather and the main oscillation periods from December to the next April during 1953—2011
年份 年景 主要周期/d 1953 中 13.8* 1954 中 13.1*, 47.2 1955 轻 10.3*, 25.0 1956 重 18.7*, 47.2 1957 重 8.6*, 25.5 1958 中 10.1*, 81.5 1959 中 48.1 1960 轻 20.4 1961 轻 9.7* 1962 轻 13.2* 1963 轻 13.5* 1964 重 8.8*, 26.1 1965 中 10.6*, 49.0 1966 轻 9.4* 1967 中 10.6*, 39.2 1968 重 8.4*, 63.2 1969 重 20.4* 1970 中 6.9*, 49.0 1971 中 10.4*, 30.9 1972 中 16.7* 1973 轻 8.8* 1974 重 16.7* 1975 轻 9.9*, 24.4 1976 中 16.3* 1977 中 21.9* 1978 中 12.9* 1979 中 13.8* 1980 中 11.2, 37.2 1981 轻 8.0*, 52.8 1982 重 13.8* 1983 重 10.4* 1984 重 21.4 1985 重 16.3*, 62.2 1986 中 21.4 1987 轻 8.6* 1988 重 13.8* 1989 中 13.8*, 54.8 1990 中 32.2 1991 轻 18.3* 1992 重 15.9* 1993 中 11.2*, 26.6 1994 中 17.0*, 28.4 1995 中 9.2*, 5.9* 1996 中 10.4* 1997 重 16.3* 1998 中 11.4*, 45.0 1999 轻 8.2*, 28.4 2000 中 27.8 2001 轻 9.9* 2002 轻 37.2 2003 轻 13.8* 2004 轻 8.6*, 51.8 2005 中 11.4*, 51.8 2006 轻 11.7* 2007 轻 15.5* 2008 重 14.5*, 89.6 2009 轻 19.1 2010 中 20.4* 2011 中 8.8*, 20.4 注:*达到0.05显著性水平。 表 3 1953年以来不小于11.0 d的最长一段低温阴雨出现的时间、日数及对应周期
Table 3 The occurrence time, number of days and corresponding period for the longest cold rainy weather more than 11 days since 1953
序号 年份 时段 日数/d 对应周期/d 1 1956 02-17—03-04 14.9 60* 2 1957 02-05—28 21.9 28* 3 1959 02-18—03-01 11.1 23* 4 1964 02-17—28 11.0 24* 5 1968 02-01—27 25.1 64* 6 1969 02-20—03-14 16.4 40* 7 1974 02-01—13 13.0 30* 8 1980 02-01—12 12.0 28* 9 1982 02-06—16 11.0 22* 10 1984 02-01—19 17.7 48* 11 1989 02-01—12 11.1 60* 12 1992 02-05—25 15.4 32* 13 1996 02-18—29 11.6 18* 14 1997 02-03—19 17.0 28* 15 2008 02-01—20 16.7 64* 注:*表示达到0.05显著性水平。 -
[1] 广东省气象局资料室.广东气候.广州:广东科技出版社, 1987:127-137. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [2] 纪忠萍, 谷德军, 梁健, 等.近55年影响广州的强冷空气及其准双周变化.大气科学, 2007, 31(5):999-1010. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705021.htm [3] 信飞, 肖子牛, 李泽椿.1997年华南汛期降水异常与大气低频振荡的关系.气象, 2007, 33(12):23-30. doi: 10.7519/j.issn.1000-0526.2007.12.004 [4] 纪忠萍, 谷德军, 吴乃庚, 等.广东省前汛期暴雨及与500 hPa关键区准双周振荡的关系.应用气象学报, 2010, 21(6):671-684. doi: 10.11898/1001-7313.20100604 [5] 张婷, 魏凤英, 韩雪.华南汛期降水与南半球关键系统低频演变特征.应用气象学报, 2011, 22(3):265-274. doi: 10.11898/1001-7313.20110302 [6] 刘延英, 彭志班.连晴和连阴雨前两支气流变化的一般特点.应用气象学报, 1990, 1(3):298-304. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900344&flag=1 [7] 施宁, 朱盛明.春季热带地区OLR低频振荡及其与长江中下游连阴雨.大气科学, 1991, 15(2):53-62. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199102005.htm [8] 欧阳玫君, 胡洛林, 杨秋明.春运期大气15~25 d振荡的传播与江苏连阴雨 (雪) 过程.气象科学, 2000, 20(1):90-95. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200001012.htm [9] 马宁, 李跃风, 琚建华.2008年初中国南方低温雨雪冰冻天气的季节内振荡特征.高原气象, 2011, 30(2):318-327. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102007.htm [10] 孙安健, 刘小宁.华南春季低温冷害气候特征研究.气象, 1981, 21(3):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX503.005.htm [11] 纪忠萍, 谢炯光.广东省春季低温阴雨的年景变化趋势.热带气象学报, 2000, 16(1):76-84. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200001009.htm [12] 黄露菁, 简裕庚.广东低温阴雨年景预测.中山大学学报:自然科学版, 2001, 40(6):91-94. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200106022.htm [13] 韩荣青, 陈丽娟, 李维京, 等.2—5月我国低温连阴雨和南方冷害时空特征.应用气象学报, 2009, 20(3):312-320. doi: 10.11898/1001-7313.20090307 [14] 刘光华.低温阴雨过程的一种中期预报方法.气象, 1980, 6(2):9-11. doi: 10.7519/j.issn.1000-0526.1980.02.005 [15] 王继志, 郭进修.我国南方低温连阴雨天气的研究.气象科技, 1981, 8(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198101000.htm [16] 卢保祥, 吕奇燊.一种低温阴雨过程的中期预报方法.广西气象, 1986(1):10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX198601002.htm [17] 罗桂湘, 覃天信.广西长低温阴雨环流特征及中期预报专家系统.广西气象, 1998, 19(1):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX801.001.htm [18] 谷德军, 王东晓, 纪忠萍, 等.墨西哥帽小波变换的影响域和计算方案新探讨.应用气象学报, 2009, 20(1):62-69. doi: 10.11898/1001-7313.20090108 [19] 纪忠萍, 何溪澄, 谷德军.1994年6月广东省特大洪涝期间气象要素的小波分析.热带气象学报, 1998, 14(2):148-155. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX802.007.htm [20] 张存杰, 董安祥, 白虎志, 等.甘肃省河东地区伏旱的小波分析.应用气象学报, 1998, 9(3):291-297. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980342&flag=1 [21] 丁一汇.东亚寒潮冷空气的传播和行星尺度作用.应用气象学报, 1991, 2(2):124-132. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910218&flag=1 [22] 金祖辉, 孙淑清.东亚大陆冬季风的低频振荡特征.大气科学, 1996, 20(1):101-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK601.011.htm [23] Compo G P, Kiladis G N, Webster P J. The horizontal and vertical structures of East Asian winter monsoon pressure surge. Quart J Roy Meteor Soc, 1999, 125: 29-54. doi: 10.1002/(ISSN)1477-870X [24] 李崇银.大气低频振荡.北京:气象出版社, 1991:264-271. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [25] 毛江玉, 吴国雄.1991年江淮梅雨与副热带高压的低频振荡.气象学报, 2005, 63(5):762-770. doi: 10.11676/qxxb2005.073 [26] 郑芙蓉.江门地区低温阴雨与冷空气活动的统计分析.广东气象, 1998(1):16-18. http://www.cnki.com.cn/Article/CJFDTOTAL-GDCX199801008.htm [27] 刘天祥.预报乌高型低温阴雨过程的指标.气象, 1979, 5(2):4-5. doi: 10.7519/j.issn.1000-0526.1979.02.005 [28] 杨贵名, 孔期, 毛冬艳, 等.2008年初"低温雨雪冰冻"灾害天气的持续性原因分析.气象学报, 2008, 66(5):836-849. doi: 10.11676/qxxb2008.076 [29] 高安宁, 陈见, 李生艳, 等.2008年华南西部罕见低温冷害天气成因分析.热带气象学报, 2009, 25(1):110-116. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200901016.htm