Cloud Characteristics and Synoptic Background Associated with Severe Convective Storms
-
摘要: 对2005—2011年造成高影响的一些强对流天气过程,按其云系特征和天气背景分为冷气团内部型、西风槽或冷涡云系尾部型、梅雨锋或切变线云系上嵌入型和高原东移高空槽云系型4种类型。冷气团内部型强对流发生在锋面或切变线云带后部的晴空区内,沿高空西北气流下滑的积云簇或向东南方向移动的短波槽是其发生的关键因子。西风槽或冷涡云系尾部型强对流发生于云带的尾部,云带后部干气流的反气旋式侵入是其主要特征。梅雨锋或切变线云系上嵌入型强对流出现在梅雨锋或切变线上,云带的北边界因常与高空急流相平行而比较清楚,强对流云团出现时云带北部的急流与高空的反气旋脊线距离较近。高原东移高空槽云系型强对流的关键影响系统是从青藏高原东部移出的短波槽云系,从水汽图像上可以看到其后部常有暗区或暗带相伴。Abstract: Severe convective storms happened during 2005—2011 are analyzed and classified into four types based on cloud characteristics and synoptic background. Type Ⅰ locates within the cold air mass, Type Ⅱ is in the rear of westerly trough or cold vortex cloud systems, Type Ⅲ is in Meiyu front or shear line and Type Ⅳ is in the upper trough system which moves eastward from the Tibetan Plateau.Type Ⅰ usually happens in North China, the Huanghuai or Jianghuai areas. Hail, gale and tornados always arise from them. Before severe convective storms initiation, large scale cloud band of front or shear line always appears at the Jiangnan Area or South China. North of the large scale cloud band is the place where the severe convective storms will initiate, where the upper airflow is eastward or southeastward. Cumulus clusters or short troughs moving along the upper airflow are the key factor of the strong convection initiation.Type Ⅱ usually occurs at the east of China and the north of the Yangtze, and the main disaster is thunderstorm, hail and gale. When the water vapor content is plenty, heavy rainfall can also appear. The place where the severe convective storms will initiate is at the rear of the cloud band corresponding to the weather system. North of the cloud band, the anticyclone dry air intrusion is the main characteristics. Although there are weather systems both at the upper and lower altitude, the storms are still difficult to forecast.Type Ⅲ commonly happens during Meiyu period at the Jianghuai, Jiangnan areas or South China. The main disaster is heavy rainfall. There are some meso-scale convective systems imbedded in Meiyu front or shear line cloud band, maintaining for a long time. On water vapor channel image of satellite, the north border of the cloud band is usually trimly, which commonly go with the upper level jet. The south border of the cloud band is usually composed of feather style cirrus cloud. On cloud-derived wind field, the distance between the upper jet stream north of the cloud band and the upper anticyclone ridge is near.Type Ⅳ commonly happens at the east of Southwest China and the west of South China. The main disasters are torrential floods and mudslides. These severe convective storms usually happen at the northwest of subtropical anticyclone when the monsoon is active. The key factor that make them happen is the short trough moving from the Tibetan Plateau, which corresponds to a cloud band. Dark area or dark band after the cloud band can be seen on water vapor images.
-
图 1 2009年6月3日个例分析资料
(a) 08:00 500 hPa位势高度场 (单位:dagpm) 和风场,(b) FY-2C气象卫星11:00水汽图像和300 hPa位涡 (单位:PVU),(c) 11:00沿图 1b中剖线的位温 (实线,单位:K) 和相对湿度 (阴影区,单位:%),(d) FY-2C气象卫星11:00可见光图像
Fig. 1 Analysis figures of case on 3 June 2009
(a) geopotential height field (unit:dagpm) and wind vectors at 500 hPa at 0800 BT, (b) water vapor image of FY-2C and 300 hPa potential vorticity (unit:PVU) at 1100 BT, (c) potential temperature (solid lines, unit: K) and relative humidity (shaded area, unit:%) alone the line in Fig. 1b, (d) visible image of FY-2C at 1100 BT
图 4 2007年7月3日和8日分析图
(a) 3日14:00 500 hPa位势高度场 (单位:dagpm) 和850 hPa风场,(b) 8日14:00 500 hPa位势高度场 (单位:dagpm) 和850 hPa风场,(c) 3日19:30水汽图像和云导风叠加图,(d) 8日19:30水汽图像及其导风叠加图
Fig. 4 Analysis figures of 3 July 2007 and 8 July 2007
(a) 500 hPa geopotential height field (unit:dagpm) and 850 hPa wind vectors at 1400 BT 3 July 2007, (b) 500 hPa geopotential height field (unit:dagpm) and 850 hPa wind vectors at 1400 BT 8 July 2007, (c) water vepor image and cloud-derived wind at 1930 BT 3 July 2007, (d) water vapor image and cloud-derived wind at 1930 BT 8 July 2007
表 1 冷气团内部型强对流天气个例
Table 1 Cases of the severe convective storms within the cold air mass
日期 地点 主要灾害 2005-04-20 江苏、安徽 冰雹、龙卷 2005-04-25 山东、江苏 冰雹、龙卷 2006-07-05 河北、山东 大风、冰雹 2009-06-03 山西、河南 大风、雷电 2009-06-14 河南、安徽、江苏 大风、雷电、冰雹 表 2 西风槽或冷涡云系尾部型强对流天气个例
Table 2 Cases of the severe convective storms at the rear of westerly trough or cold vortex cloud systems
日期 地点 主要灾害 2005-06-14 辽宁、山东、江苏 雷暴 2007-07-18 山东、河南 短时强降水 2009-06-05 山东、江苏、安徽 大风、雷电、冰雹 2010-08-07 甘肃、陕西 短时强降水 2010-08-08—09 山东、河北、山西、陕西 雷暴 表 3 梅雨锋或切变线云系上嵌入型强对流天气个例
Table 3 Cases of the severe convective storms imbedded in Meiyu front or shear line
日期 地点 主要灾害 2007-06-06—09 贵州、广东、广西 暴雨 2007-07-01—10 江淮、江南、江汉 暴雨、龙卷 2009-07-02—03 江南、华南 暴雨 2010-06-19—20 江南 暴雨 2010-07-05—06 江南 暴雨 2010-07-13—14 江南 暴雨 表 4 高原东移高空槽云系型强对流天气个例
Table 4 Cases of the severe convective storms of upper trough moving eastward from the Tibetan Plateau
日期 地点 主要灾害 2006-06-12—13 贵州望谟、广西 暴雨、山洪 2007-06-08—09 贵州、广西 暴雨、洪涝 2009-07-30—31 四川 暴雨 2009-08-28—29 四川、重庆 暴雨 2010-06-16—17 贵州、广西、湖南 暴雨、山洪 2011-06-05—06 贵州 暴雨、泥石流 2011-06-16—17 四川、重庆 暴雨 -
[1] 张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [2] 俞小鼎, 王迎春, 陈明轩, 等.新一代天气雷达与强对流天气预警.高原气象, 2005, 24(3):456-464. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200503025.htm [3] 郑媛媛, 姚晨, 郝莹, 等.不同类型大尺度环流背景下强对流天气的强对流天气的短时临近预报预警研究.气象, 2011, 37(7):795-801. doi: 10.7519/j.issn.1000-0526.2011.07.003 [4] 陈渭民.卫星气象学.北京:气象出版社, 2005. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [5] 徐为进, 吕冬红, 沈利峰, 等.东北冷涡南落型强对流天气的潜势预报分析.气象科学, 2009, 29(5):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200905009.htm [6] 刘会荣, 李崇银.干侵入对济南"7.18"暴雨的作用.大气科学, 2010, 32(2):374-386. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201002012.htm [7] Kocin P J, Uccellini L W.Snowstorms along the Northeastern Coast of the United States:1955 to 1985.Meteorological.Monographs, No.44, Amer Meteor Soc, 1990:1-280. http://www.springer.com/de/book/9781940033938 [8] Schultz D M.Reexamining the cold conveyor belt.Mon Wea Rev, 2001, 129:2205-2225. doi: 10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2 [9] 王瑾, 蒋建莹, 江吉喜."7·18"济南突发性大暴雨特征.应用气象学报, 2009, 20(3):295-302. doi: 10.11898/1001-7313.20090305 [10] 王晓芳, 徐明, 闵爱荣, 等.2010年5月我国南方持续性暴雨过程分析.暴雨灾害, 2010, 29(2):193-199. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201002018.htm [11] 赵思雄, 陶祖钰, 孙建华, 等.长江流域梅雨锋暴雨机理的分析研究.北京:气象出版社, 2004. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [12] 孙晶.梅雨锋暴雨中尺度对流系统研究若干进展.气象科技, 2011, 39(3):257-265. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201103002.htm [13] 赵玉春.梅雨锋对引发暴雨的中尺度对流系统发生发展影响的研究.大气科学, 2010, 35(1):81-94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201101008.htm [14] 赵玉春, 王叶红, 崔春光.一次典型梅雨锋暴雨过程的多尺度结构特征.大气科学学报, 2011, 34(1):14-27. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201101004.htm [15] 姚秀萍, 于玉斌, 赵兵科.梅雨锋云系的结构特征及其成因分析.高原气象, 2005, 24(6):1002-1011. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200506021.htm [16] 郑新江, 李玉兰, 杜长萱.1995年6月梅雨期暴雨的水汽图像分析.应用气象学报, 1998, 9(2):246-250. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980234&flag=1 [17] 方宗义, 项续康, 方翔, 等.2003年7月3日梅雨锋切变线上的β-中尺度暴雨云团分析.应用气象学报, 2005, 16(5):569-575. doi: 10.11898/1001-7313.20050502 [18] 方翔, 许健民, 张其松.高密度云导风资料所揭示的发展和不发展热带气旋的对流层上部环流特征.热带气象学报, 2000, 16(3):218-224. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200003003.htm [19] 侯青, 许健民.卫星导风资料所揭示的对流层上部环流形势与我国夏季主要雨带之间的关系.应用气象学报, 2006, 17(2):138-144. doi: 10.11898/1001-7313.20060202 [20] 许健民, 郑新江, 徐欢, 等.GMS_5水汽图象所揭示的青藏高原地区对流层上部水汽分布特征.应用气象学报, 1996, 7(2):246-251. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960220&flag=1 [21] 陈栋, 顾雷, 蒋兴文.1981—2000年四川夏季暴雨大尺度环流背景特征.大气科学学报, 2010, 33(4):443-450. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201004007.htm [22] 陈栋, 李跃清, 黄荣辉.在"鞍"型大尺度环流背景下西南低涡发展的物理过程分析及其对川东暴雨发生的作用.大气科学, 2007, 31(2):185-201. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200702001.htm [23] 刘开宇, 李丽, 张云瑾, 等.卫星水汽图像和位势涡度场在强对流天气分析中的应用.云南大学学报:自然科学版, 2009, 31(增刊Ⅱ):434-437. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200805004.htm