Current and Electromagnetic Field of M Component in Triggered Lightning
-
摘要: 利用2008—2010年在广州从化人工触发闪电试验中观测到的闪电通道底部电流、近距离电场以及近距离磁场数据资料,对人工触发闪电M过程的电流和电磁场特征及相关性进行了分析。统计分析结果显示:M分量电场波形持续时间和10%~90%上升时间几何平均值分别为0.49 ms和0.12 ms;电流波形持续时间、10%~90%上升时间和电流变化的几何平均值分别为0.53 ms, 0.11 ms和0.34 kA;磁场波形持续时间、10%~90%上升时间和磁场变化的几何平均值分别为0.65 ms, 0.16 ms和2.76×10-5T。此外,M分量的电流、电场及磁场波形间存在一定的相互关系。相关分析结果表明:M分量的电磁场与电流资料在峰值幅度上具有较显著相关性,几何形状也较为一致,利用电磁场资料反演M分量的电流波形具有可行性。Abstract: Based on data obtained in the triggered lightning at Conghua, Guangzhou during the period of 2008—2010, the characteristics and correlations of base current and electromagnetic field of M component are analyzed.Lightning M components are transient enhancements in the continuing current and in the associated channel luminosity after the return stroke. A typical M component is characterized by a more or less symmetrical current pulse at the channel base. The M component characteristics of each charge is examined using multiple station measurements of electric and magnetic fields at distances of 80 m, 2 km and 9 km from triggered lightning channels, respectively. Different bandwidth between the current and the electromagnetic field could lead to the differences between different data waveform, affecting the accuracy of the extracted parameters. Furthermore, the relation between the current and the close electromagnetic field is complex since it includes the static field, the induction field and radiation field. The ranging from 500 Hz to 20 kHz band pass filter is designed to filter these data, in order to obtain the valid data within the bandwidth of the M component.Results show that the geometric mean values of duration, 10%—90% rise time, decline time and half-peak width for electric field waveform of M component are 0.49 ms, 0.12 ms, 0.28 ms and 0.15 ms, respectively. The geometric mean values of duration, 10%—90% rise time, decline time, half-peak width and peak for current waveform of M component are 0.53 ms, 0.11 ms, 0.31 ms, 0.17 ms and 0.34 kA. The geometric mean values of duration, 10%—90% rise time, decline time, half-peak width and peak for magnetic field waveform of M component are 0.65 ms, 0.16 ms, 0.37 ms, 0.21 ms and 2.76×10-5 T.In addition, the following relationship exists between the current, electric field and magnetic field waveform of M component. The correlation coefficient of duration, 10%—90% rise time, decline time, half-peak width, peak between the electric field and current are 0.64, 0.69, 0.39, 0.77 and 0.86, respectively. The coefficients between the magnetic field and current are 0.62, 0.86, 0.55, 0.76 and 0.93, respectively.In summary, there is a relatively strong correlation between the peaks of current and electromagnetic field waveform, and their geometry is comparable. As a result, the current waveform of M component can be calculated by the electromagnetic field data.
-
Key words:
- triggered lightning;
- M component;
- electromagnetic field
-
图 5 电磁场与电流持续时间直方图
(a) 磁场与电流持续时间,(b) 电场与电流持续时间,(c) 磁场与电流上升时间,(d) 电场与电流上升时间,(e) 磁场与电流半峰值宽度,(f) 电场与电流半峰值宽度,(g) 磁场与电流波尾时间, (h) 电场与电流波尾时间
Fig. 5 The statistic histograms of duration magnetic and electric versus current
(a) duration of magnetic versus current, (b) duration of electric versus current, (c) rise time of magnetic versus current, (d) rise time of electric versus current, (e) half-peak width of magnetic versus current, (f) half-peak width of electric versus current, (g) decline time of magnetic versus current, (h) decline time of electric versus current
表 1 电流资料中M分量参数的统计结果
Table 1 Statistic results of M-component parameters for current waveform
参数 样本量 算数平均值 几何平均值 中值 标准偏差 持续时间/ms 31 0.63 0.53 0.5 0.41 10%~90%上升时间/ms 31 0.13 0.11 0.12 0.11 波尾时间/ms 31 0.34 0.31 0.34 0.13 半峰值宽度/ms 30 0.20 0.17 0.15 0.13 电流幅度/kA 31 0.47 0.34 0.32 0.39 表 2 电场资料中M分量参数的统计结果
Table 2 Statistic results of M-component parameters for electric field waveform
参数 样本量 算数平均值 几何平均值 中值 标准偏差 持续时间/ms 24 0.52 0.49 0.47 0.24 10%~90%上升时间/ms 24 0.15 0.12 0.10 0.12 波尾时间/ms 24 0.30 0.28 0.30 0.09 半峰值宽度/ms 23 0.17 0.15 0.16 0.07 电场相对变化 24 0.54 0.38 0.32 0.51 表 3 磁场资料中M分量参数的统计结果
Table 3 Statistic results of M-component parameters for magnetic field waveform
参数 样本量 算数平均值 几何平均值 中值 标准偏差 持续时间/ms 18 0.68 0.65 0.66 0.24 10%~90%上升时间/ms 18 0.19 0.16 0.14 0.12 半峰值宽度/ms 17 0.23 0.21 0.24 0.1 波尾时间/ms 18 0.38 0.37 0.36 0.1 磁场幅度/10-5T 18 4.66 2.76 2.53 5.87 表 4 电流与电磁场资料各项参数的相关分析
Table 4 Correlation of parameters of current and electromagnetic field waveform
参数 电流与磁场相关系数 电流与电场相关系数 峰度 0.93 0.86 持续时间 0.62 0.64 10%~90%上升时间 0.86 0.69 半峰宽度 0.76 0.77 波尾时间 0.55 0.39 -
[1] 王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000:131-132. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [2] Malan D J, Collens H.Progressive Lightning Ⅲ—The Fine Structure of Return Lightning Strokes.Proc R Soc London:Ser A, 1937, 162:175-203. doi: 10.1098/rspa.1937.0175 [3] Thottappillil R, Goldberg J D, Rakov V A, et al.Properties of M components from currents measured at triggered lightning channel base.J Geophys Res, 1995, 100:25711-25720. doi: 10.1029/95JD02734 [4] Fisher R J, Schnetzer G H, Thottappillil R, et al.Parameters of triggered-lightning flashes in Florida and Alabama.J Geophys Res, 1993, 98:22887-22908. doi: 10.1029/93JD02293 [5] Rakov V A, Uman M A.Lightning:Physics and Effects.New York:Cambridge University Press, 2003. [6] 李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi: 10.11898/1001-7313.20080403 [7] 郑栋, 孟青, 吕伟涛, 等.北京及其周边地区夏季地闪活动时空特征分析.应用气象学报, 2005, 16(5):638-644. doi: 10.11898/1001-7313.20050510 [8] 张文娟, 孟青, 吕伟涛, 等.时间差闪电监测网的误差分析和布局优化.应用气象学报, 2009, 20(4):402-410. doi: 10.11898/1001-7313.20090403 [9] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi: 10.11898/1001-7313.20060504 [10] 李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi: 10.11898/1001-7313.20100113 [11] Thottappillil R, Rakov V A, Uman M A.K and M changes in close lightning ground flashes in Florida.J Geophys Res, 1990, 95:18631-18640. doi: 10.1029/JD095iD11p18631 [12] 张义军, 刘欣生, 王才伟, 等.空中人工触发闪电试验及特性分析.高原气象, 1998, 17(1):55-64. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX801.005.htm [13] Rachidi F, Bermudez J L, Rubinstein M, et al.On the estimation of lightning peak currents from measured fields using lightning location systems.Journal of Electrostatics, 2004, 60:121-129. doi: 10.1016/j.elstat.2004.01.010 [14] Uman M A, Krider E P.A review of natural lightning:Experimental data and modeling.IEEE Tansactions on Electromagnetic Compata-bility, 1982, 24(2):79-112. [15] Hubert P, Laroche P.Triggered lighting in New Mexico.J Geophys Res, 1984, 89(2):2511-2521. [16] 周忠华, 刘欣生.人工触发闪电放电电流的间接测量及其特征分析.高原气象, 1993, 12(1):67-76. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199301008.htm [17] Malan D J, Schonland B F J. Progressive Lightning, 7, Directly Correlated Photographic and Electrical Studies of Lightning from Near Thunderstorm.Proc R Soc London:Ser A.1947, 191:485-503. [18] 赵阳, 郄秀书, 陈明理, 等.人工触发闪电中的M分量特征.高原气象, 2011, 30(2):508-517. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102028.htm [19] Miki M, Shindo T, Rakov V A, et al.Characterization of Current Pulses Superimposed on The Continuous Current in Upward Lightning Initiated From Tall Objects and in Rocket-Triggered Lightning//Paper of 28th International Conference on Lightning Protection.Kanazawa, Japan, 2006. [20] Hussein A M, Janischewskyj W, Chang J S, et al.Simultaneous measurement of lightning parameters for strokes to the Toronto Canadian National Tower.J Geophys Res, 1995, 100(5):8853-8861.