Developing of Beidou Radiosonde System and Analysis on Its Wind Measuring Performance
-
摘要: 高空气象观测是综合气象观测系统的重要组成部分,对天气预报、气候变化等业务科研具有重要的作用。基于北斗卫星导航系统研发了北斗探空仪及地面接收系统,目前试验样机生产已初步完成。北斗探空仪可采取单北斗、单GPS、北斗与GPS混合定位测风等3种测风模式,试验结果表明:北斗探空仪采用混合定位测速方式测风与GPS标准探空仪相比, 北向速度标准差为0.05 m·s-1,平均偏差为-0.05 m·s-1; 东向速度标准偏差为0.03 m·s-1, 平均偏差为-0.01 m·s-1; 高度标准偏差为6.88 m,平均偏差为7.48 m。北斗探空仪测风性能与GPS探空仪相当。Abstract: As an important constituent of the integrated meteorological observation system, the upper air meteorological observations have extremely important effects on weather forecast, climate change research and other work, and it plays an irreplaceable benchmark function in atmospheric remote sensing observation authenticity verification and calibration of testing. The development of Beidou radiosonde and the ground receiving system is based on Beidou Satellite Navigation System with completely independent intellectual property rights, and the prototypes are assembled. By the end of 2012, Beidou Satellite Navigation System can provide preliminary service with 14 satellites in orbit, including 5 Geostationary Earth Orbit (GEO) satellites, 4 Medium Earth Orbit (MEO) satellites and 5 Inclined Geosynchronous Satellite Orbit (IGSO) satellites in 3 inclined orbits. On this basis, Beidou radiosonde is examined, and comparative analysis are carried out on its different patterns of wind measuring, i.e., single Beidou, single GPS and mixed mode. The results show that the wind measuring performance of Beidou and GPS radiosonde is quite close. The deviation of Beidou radiosonde compared to the GPS radiosonde is as follows: The standard deviation of the north velocity is 0.05 m·s-1, the average deviation is-0.05 m·s-1, the standard deviation of the east velocity is 0.03 m·s-1, the average deviation is-0.01 m·s-1, the height standard deviation is 6.88 m and the average deviation is 7.48 m. The PDOP value in single Beidou mode is large compared to GPS radiosonde and the accuracy of positioning is poor, because the current constellation is not fully deployed. Beidou radiosonde performance is relatively stable in the lower atmosphere, but a violent wave happens in the high level atmosphere, which means that the stability of the national dual-mode chip and module needs improving.
-
表 1 CC50测风模块性能指标
Table 1 The performance index of CC50
参数 指标 水平位置精度 5 m 垂直位置精度 10 m 速度精度 0.1 m·s-1 重捕获时间 ≤1 s 平均热启动时间 1 s 平均冷启动时间 37 s 输入信号 GPS L1和BD2 B1 通道数 并行双32通道 定位输出速率 1 Hz 通讯端口 两个串口双向,LV-TTL电平 表 2 北斗探空仪性能指标
Table 2 The performance index of Beidou radiosonde
参数技术指标 范围 探测距离 0~200 km 探测高度 0~36 km 温度测量范围 -90℃~50℃ 温度最大静态测量误差 0.2℃ 湿度测量范围 1%~100%(相对湿度) 湿度最大静态测量误差 3%(相对湿度) 气压测量范围5 hPa~1060 hPa(高度计算) 100 hPa~1060 hPa(传感器直接测量) 气压最大测量误差 1 hPa 风速测量范围 0~150 m·s-1 风速最大测量误差 ±0.3 m·s-1 风向测量范围 0°~360° 风向最大测量误差 ±3°(风速分量大于3 m·s-1) 发射机频率范围 401~406 MHz 发射机发射功率 ≤23 dBm 发射机发射谱宽 ≤20 kHz(-50 dBc) 发射机频率稳定度 ≤20 kHz(温差≤100℃) 天线频率范围 1567.75±9 MHz 天线增益 >3 dBi 天线极化方式 右旋极化 表 3 3种模式静态定位精度对比
Table 3 The comparison of three modules for the positioning precision in the static test
模式 CEP50/m 水平标准差/m 高度标准差/m 速度标准差/(m·s-1) 平均PDOP GPS 2.11 2.67 5.49 0.02 1.80 北斗 8.16 12.64 20.27 0.06 5.03 北斗与GPS混合 2.10 2.66 5.93 0.02 1.40 注:CEP50为圆概率误差。 -
[1] Peter T M.Comparison of wind-profiler and radiosonde measurements in the tropoc.J Atmos Ocean Technol, 1993, 10(2):122-127. [2] Rust W D, Thomas C M, Stolzenburg M, et al.Test of a GPS radiosonde in thunderstorm electrical environments.J Atmos Ocean Technol, 1999, 16(5):550-560. doi: 10.1175/1520-0426(1999)016<0550:TOAGRI>2.0.CO;2 [3] Saarnimo T.GPS the Global Windfinding Method. 10th Symposium on Meteorological Observations and Instrumentation, 1998:51-54. [4] 李柏, 李伟.高空气象探测系统现状分析与未来发展.中国仪器仪表, 2009(6):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-NJGW201504052.htm [5] WMO气象仪器和观测方法指南 (第六版中译文). 世界气象组织, 1996: 224-284. [6] [2011-05-30]. http://www.sxsasa.org/list.php?pid=26&nid=207&page=2. [7] [2010-08-12]. http://www.zjzq.com.cn/UploadFile/2010-8/20108120201861970.jpg. [8] 高太长, 吴维, 郝晓静, 等.无源北斗探空测风系统误差分析.解放军理工大学学报:自然科学版, 2009, 10(1):98-102. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200901017.htm [9] 李柏, 李伟.阳江第八届国际探空系统比对试验综述.气象科技进展, 2011, 1(3):6-13. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201103004.htm [10] 张国舫, 张玉存.GPS探空仪两种测风计算方法的比较.气象水文海洋仪器, 2009(3):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW200903004.htm [11] 王缅, 李伟, 陈永清, 等.L波段探空系统高空风平滑计算方法探讨.气象, 2011, 37(1):85-91. doi: 10.7519/j.issn.1000-0526.2011.01.010 [12] 李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. doi: 10.11898/1001-7313.20110408 [13] Nash J, Oakley T, Vömel H, et al.WMO Intercomparison of High Quality Radiosonde Syst.2010. [14] 张玉存, 赵炜.用矢量平均法计算空中风连续变量的方法.军事气象水文, 2006(5):7-11. [15] 姚雯, 马颖, 黄炳勋, 等.利用GPS定位资料分析L波段雷达测风性能.应用气象学报, 2009, 20(2):195-202. doi: 10.11898/1001-7313.20090209 [16] 姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. doi: 10.11898/1001-7313.20080312 [17] 颜晓露, 郑向东, 李蔚, 等.两种探空仪观测湿度垂直分布及其应用比较.应用气象学报, 2012, 23(4):433-440. doi: 10.11898/1001-7313.20120406 [18] 梁军, 张胜军, 隋洪起, 等.大连地区大雾特征.应用气象学报, 2009, 20(1):28-35. doi: 10.11898/1001-7313.20090104 [19] 杨鑫春, 李征航, 吴云.北斗卫星导航系统的星座及XPL性能分析.测绘学报, 2011(5):68-72. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB2011S1013.htm [20] GPS探空测风系统功能规格需求书. 北京: 中国气象局大气探测技术中心, 2007.