Applications of Ground-based Microwave Radiation Data to Short-term Rainstorm and Potential Forecast
-
摘要: 利用湖北咸宁站2008年6月1日—2012年8月1日地基微波辐射计观测数据反演的相对湿度、大气液态水含量、大气水汽总量、大气层结曲线,对比分析了短时暴雨与一般降水过程发生前微波辐射计观测资料反映的特征,研究微波辐射计观测资料在短时暴雨潜势预报中的应用。结果表明:当大气液态水含量从1 mm左右急增至约20 mm、大气水汽总量从60~70 mm急增到90 mm以上之后,如果0~6 km整层相对湿度均接近饱和或达到饱和状态,且在800~950 hPa附近存在逆温层,最大K指数超过35℃,最大TT指数 (Thei-Tornqvist指数) 达到或超过40℃,那么未来3 h或6 h内发生短时暴雨的几率大。Abstract: Microwave radiometer (MWR) can derive the profiles of relative humidity, atmospheric liquid water content, and atmospheric water vapor content with high temporal resolution. Using MWR measurements from June 2008 to August 2012 of Xianning Station in Hubei Province operated by the Institute of Heavy Rain, CMA, based on 523 precipitation cases, the characteristics of MWR measurements before the occurrences of short-term rainstorms with more than 50 mm precipitation in 3 hours or 6 hours and other general rainfalls are analyzed, and the applications of MWR measurements in the forecast of short-term rainstorms are explored. For both short-term rainstorms and general rainfalls, the relative humidity in 0—6 km heights is close to saturation or is saturating in 3 hours before the rainfall occurrence, and no distinct difference is found between these two kinds of precipitations, however, the transforming of relative humidity from unsaturation to saturation always means the occurrence of rainfall process. Within 12 hours before the short-term rainstorm occurrence, the integrated liquid water (ILW) increases sharply from about 1 mm to about 20 mm, and the integrated water vapor (IWV) increases rapidly from 60—70 mm to 90 mm or more, which are helpful for the potential analysis of short-term rainstorm forecast. Compared with the short time rainstorm, amplitude and rate of occurrence of precipitation of ILW and IWV growth will be much smaller.Within 6 hours before the short-term rainstorm occurrence, a temperature inversion layer exists near 800—950 hPa, and the largest K index and TT index are above 35℃ and 40℃, respectively, otherwise, the atmospheric stratification curve is unstable, and the unstable energy may be larger than 1000 J·kg-1 or maybe small depending on the maintenance of weak precipitation before the rainstorm occurrence.Of all the historical cases, there is a part of general rainfalls also occur with unstable atmosphere and temperature inversion at the bottom level. Therefore, it cannot be determined whether short-time rainstorm will occur only by the atmospheric stratification stability. In conclusion, when the ILW increases sharply from about 1 mm to about 20 mm, and the IWV increases rapidly from 60—70 mm to 90 mm or more, if the relative humidity is close to saturation or is saturating in 0—6 km heights, and a temperature inversion layer exists near 800—950 hPa, and additionally, the largest K and TT index are above 35℃ and 40℃, then the probability of the occurrence of a short-term rainstorm is large in coming 3 hours or 6 hours. The verification with 519 other general rainfall cases shows that, using these criterions, 2 cases matches the above characteristics, and the false alarm rate is about 0.4%.
-
Key words:
- ground-based microwave radiation;
- rainstorm;
- potential forecast
-
图 1 短时暴雨过程相对湿度垂直廓线
(a)2009年7月23日21:00—24日05:00, (b)2010年7月11日01:00—09:00,(c)2010年7月14日03:00—12:00, (d)2011年6月13日19:00—14日03:00
Fig. 1 The relative humidity vertical profiles of the short-term rainstorm processes
(a) from 2100 BT 23 July to 0500 BT 24 July in 2009, (b) from 0100 BT to 0900 BT on 11 July 2010, (c) from 0300 BT to 1200 BT on 14 July 2010, (d) from 1900 BT 13 June to 0300 BT 14 June in 2011
图 2 短时暴雨过程大气液态水含量 (ILW) 廓线
(a)2009年7月23日21:00—24日05:00, (b)2010年7月11日01:00—09:00,(c)2010年7月14日03:00—12:00, (d)2011年6月13日19:00—14日03:00
Fig. 2 The atmospheric liquid water content (ILW) vertical profiles of the short-term rainstorm processes
(a) from 2100 BT 23 July to 0500 BT 24 July in 2009, (b) from 0100 BT to 0900 BT on 11 July 2010, (c) from 0300 BT to 1200 BT on 14 July 2010, (d) from 1900 BT 13 June to 0300 BT 14 June in 2011
图 3 短时暴雨过程大气水汽总量 (IWV) 廓线
(a)2009年7月23日21:00—24日05:00, (b)2010年7月11日01:00—09:00,(c)2010年7月14日03:00—12:00, (d)2011年6月13日19:00—14日03:00
Fig. 3 The atmospheric water vapor content (IWV) profiles of the short-term rainstorm processes
(a) from 2100 BT 23 July to 0500 BT 24 July in 2009, (b) from 0100 BT to 0900 BT on 11 July 2010, (c) from 0300 BT to 1200 BT on 14 July 2010, (d) from 1900 BT 13 June to 0300 BT 14 June in 2011
图 4 短时暴雨过程K指数和TT指数随时间变化
(a)2009年7月23日22:00—24日05:00, (b)2010年7月11日03:00—09:00, (c)2010年7月14日07:00—13:00, (d)2011年6月14日01:00—06:00
Fig. 4 Temporal variation of K index and TT index for the short-term rainstorm processes
(a) from 2200 BT 23 July to 0500 BT 24 July in 2009, (b) from 0300 BT to 0900 BT on 11 July 2010, (c) from 0700 BT to 1300 BT on 14 July 2010, (d) from 0100 BT to 0600 BT on 14 June 2011
表 1 2008年6月1日—2012年8月1日湖北咸宁站短时暴雨天气过程
Table 1 The short-term rainstorm processes of Xianning Station in Hubei Province from 1 June 2008 to 15 July 2012
天气过程 3 h最大降水量及发生时段 6 h最大降水量及发生时段 2009年7月23日20:00—24日20:00 143.3 mm, 24日05:00—07:00 143.6 mm, 24日05:00—10:00 2010年7月10日20:00—11日20:00 51.3 mm, 11日09:00—11:00 75.2 mm, 11日09:00—14:00 2010年7月13日20:00—14日20:00 46.5 mm, 14日13:00—15:00 92.3 mm, 14日13:00—18:00 2011年6月13日20:00—14日20:00 76.6 mm, 14日07:00—09:00 132.1 mm, 14日07:00—12:00 -
[1] 俞小鼎, 姚秀萍, 熊延南, 等.多普勒天气雷达原理与业务应用.北京:气象出版社, 2006:91-95. [2] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理与方法.北京:气象出版社, 2000:400-425. [3] Mueller C, Saxon T, Roberts R, et a1.NCAR Auto-Nowcast System.Wea Forecasting, 2003, 18:545-561. doi: 10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2 [4] Hand W H.An object-oriented technique for now casting heavy shower and thunder storms.Meteor Appl, 1996, 3:31-41. [5] 俞小鼎, 张爱民, 郑媛媛, 等.一次系列下击暴流事件的多普勒天气雷达分析.应用气象学报, 2006, 17(4):385-393. doi: 10.11898/1001-7313.20060401 [6] 袁野, 杨光, 胡雯, 等.利用双多普勒雷达分析对流云垂直运动结构试验.应用气象学报, 2007, 18(3):306-313. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070352&flag=1 [7] 张家国, 万玉发, 王珏.风暴生命史雷达特征量反演.应用气象学报, 2008, 19(1):101-105. doi: 10.11898/1001-7313.20080116 [8] 徐广阔, 孙建华, 雷霆, 等.多普勒天气雷达资料同化对暴雨模拟的影响.应用气象学报, 2009, 20(1):36-46. doi: 10.11898/1001-7313.20090105 [9] NOAA Eaah Sciences Research Lab.Continuous Upper Air Profiling for Improved Local Weather Prediction.2009:1-35. [10] 刘建忠, 张蔷.微波辐射计反演产品评价.气象科技, 2010, 38(3):325-330. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201003011.htm [11] 王婷婷, 王迎春, 陈明轩, 等.北京地区干湿雷暴形成机制的对比分析.气象, 2011, 37(2):142-154. doi: 10.7519/j.issn.1000-0526.2011.02.003 [12] Dominique Ruffieux, Nash J, Jeannet P, et a1.The COST720 temperature, humidity, and cloud profiling campaign:TUC.Meteorologische Zeitschrift, 2006, 1:5-10. [13] Revercomb H E, Turner D C, Tobin D D, et a1.The ARM program's water vapor intensive observation periods:Overview, initial accomplishments, and future challenges.Bull Amer Meteor Soc, 2003, 84:217-236. doi: 10.1175/BAMS-84-2-217 [14] 刘红燕, 李炬, 曹晓彦, 等.遥感大气结构的地基12通道微波辐射仪的测量结果分析.遥感技术与应用, 2007, 2(22):222-228. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKK200612001075.htm [15] 雷恒池, 魏重, 沈志来, 等.微波辐射计探测降雨前水汽和云液水.应用气象学报, 2011, 12(增刊):73-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htm [16] 周嵬, 吴宏议, 田海军.基于微波辐射计资料浅析对流降水云内与环境温差.干旱气象, 2011, 29(1):10-16. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201101003.htm [17] 王叶红, 赖安伟, 赵玉春.地基微波辐射计资料同化对一次特大暴雨过程影响的数值试验研究.暴雨灾害, 2010, 29(3):201-207. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201003001.htm [18] 魏东, 孙继松, 雷蕾, 等.用微波辐射仪和风廓线资料构建探空资料的定量应用可靠性分析.气候与环境研究, 2011, 16(6):697-706. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201106005.htm [19] 刘志雄, 戴泽军, 彭菊香, 等.基于LAPS的一次局地强冰雹过程分析.暴雨灾害, 2009, 28(4):313-320. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200904005.htm [20] 廖晓农, 俞小鼎, 王迎春.北京地区一次罕见的雷暴大风过程特征分析.高原气象, 2008, 27(6):1350-1360. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200806020.htm [21] 徐桂荣.孙振添, 李武阶, 等.地基微波辐射计与GPS无线电探空和GPS/MET的观测对比分析.暴雨灾害, 2010, 29(4):315-321. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201004003.htm