Diagnostic Analysis on the First Summer Rainstorm Process of Central Yunnan in 2012
-
摘要: 利用地面加密观测资料、多普勒天气雷达回波强度、卫星云图TBB资料和NCEP 1°×1°分析资料,应用滤波和广义位涡理论, 对2012年6月1—2日云南省中部的首场切变冷锋型暴雨天气过程进行诊断分析。结果表明:中尺度天气系统是该次暴雨产生的直接原因, 强降水均发生在云顶亮温等值线梯度较大一侧,回波强度空间分布不均匀,回波发展高度较低,但回波结构致密,低质心,以液态降水粒子为主,因此降水分布不均匀,但降水效率高;水汽源地为孟加拉湾;低层水汽通量辐合带与冷锋、切变线、中尺度辐合线以及β中尺度低涡位置有较好的对应关系;700 hPa,850 hPa水汽通量强辐合区中心位置叠加时,其所在区域地面降水增强;强降水区域上空中低层广义湿位涡的正异常现象体现了降水区中低层高水汽集中特征;单站上空低层的广义湿位涡正异常增加时,地面降水强度增加,反之减小;800 hPa广义湿位涡正异常区对地面降水分布有一定指示作用,但暴雨中心与广义湿位涡强中心并不完全重合。Abstract: Based on intensive observations, hourly FY-2E infrared TBB data, Doppler radar echo data and analysis data of NCEP (1°×1°, 4 times a day), the first rainstorm process in central Yunnan from 1 June to 2 June in 2012 are diagnostically analyzed using meso scale filtering method and generalized moist potential vortices theories (GMPV).The result shows that this strong precipitation process is caused by cold front and sheer, which is typical in central Yunnan. Shear line, mesoscale convergence line and meso-β-scale low vortex are significant at 700 hPa after mesoscale filtering, but they are not obvious in largescale original stream fields. So the direct causes for this rainstorm process are mesoscale weather systems. It seems apparent that the rainstorm always happens at the side which TBB gradient is higher in the convective cloud clusters by hourly FY-2E infrared TBB data. After analysis on Doppler radar echo data, there is a large area of flocculent echoes at the strong precipitation region, and then some convective clouds develop in these flocculent echoes. Distribution of rainfall is not uniform in space and the efficiency of rainfall is high because of uneven distribution of echoes in space, low height and dense structure of echoes. The source region of water vapor is the Bay of Bengal. The water vapor convergence zones have a good correlation with the position of surface cold front, shear line, mesoscale convergence line and meso-β-scale low vortex at 700 hPa. The ground precipitation strengthens when the center of vapor convergence area at 700 hPa and 850 hPa are superimposed.The positive anomaly of GMPV at mid-low layers over strong rainfall area can reflect characteristics of high water vapor convergence. Vertical distribution and change of GPMV at the low layer of single station show good indicative significance in this strong rainfall process. The rainfall is intensified when the positive anomaly of GPMV at the low layer of single station increase, and vice versa. The GMPV at 800 hPa has an indicative effect on the location of heavy rainfall. The area of GPMV positive anomaly is always located in the center of strong precipitation and its surrounding area, but the center of strong precipitation is not coincided with the center of positive anomaly of GMPV completely. The forecast of this process will be better if the circulation patterns are analyzed synthetically, and the generalized moist potential vorticity theories are used as well.
-
图 6 2012年5月31日20:00—6月2日08:00 700 hPa和850 hPa水汽通量合成图
(箭头为水汽通量方向;阴影为水汽通量强度,单位:g·s-1·cm-1·hPa-1)
Fig. 6 Water vapor flux composition graphs from 0800 BT 31 May to
0800 BT 2 June in 2012 at 700 hPa and 850 hPa (arrow denotes water vapor direction; the shaded denotes water flux intensity, unit:g·s-1·cm-1·hPa-1)
表 1 2000—2012年云南省首场强降水过程和影响系统统计
Table 1 First rainstorm processes and their influence systems in Yunnan from 2000 to 2012
年份 时段 大雨及以上站次 强降水落区 影响系统 2000 5月16日20:00—17日20:00 22 滇西、滇西南 南支槽、西南急流 2001 5月9日20:00—10日20:00 24 滇西、滇南 南支槽、冷锋 2002 5月10日20:00—11日20:00 23 滇西北 南支槽、西南急流 2003 5月18日20:00—19日20:00 42 滇中 南支槽、切变线、冷锋 2004 4月14日20:00—15日20:00 36 滇西、滇中 南支槽、西风急流 2005 6月13日20:00—14日20:00 29 滇中 切变线、冷锋 2006 4月29日20:00—30日20:00 36 滇南 中纬低槽、西南急流 2007 5月11日20:00—12日20:00 22 滇西北 切变线、冷锋 2008 5月4日08:00—5日08:00 25 滇西南 南支槽、切变线、冷锋 2009 5月30日20:00—31日20:00 22 滇西 南支槽 2010 5月25日08:00—26日08:00 23 滇西、滇南 南支槽、西南急流 2011 6月27日08:00—28日08:00 36 滇西、滇南 南支槽、高压外围 2012 6月1日08:00—2日08:00 37 滇中 切变线、冷锋 -
[1] 徐美玲, 段旭, 杞明辉, 等.云南省天气预报员手册.北京:气象出版社, 2011. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [2] 何华, 孙绩华.云南冷锋切变大暴雨过程的环流及水汽输送特征.气象, 2003, 29(4):48-52. doi: 10.7519/j.issn.1000-0526.2003.04.011 [3] 张秀年, 段旭.云南冷锋切变型暴雨的中尺度特征分析.南京气象学院学报, 2006, 29(1):114-121. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200601016.htm [4] 段旭, 李英.滇中暴雨的湿位涡诊断分析.高原气象, 2000, 19(2):253-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200002014.htm [5] 尤红, 曹中和.2004年云南秋季强降水位涡诊断分析.气象, 2006, 32(7):95-101. doi: 10.7519/j.issn.1000-0526.2006.07.014 [6] 许美玲, 段旭, 张腾飞, 等.低纬高原地区一次罕见大暴雨的中尺度数值模拟.高原气象, 2006, 25(2):268-276. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200602012.htm [7] 尤红, 肖子牛, 王曼, 等.2008年"7.02"滇中大暴雨的成因诊断与数值模拟.气象, 2010, 36(1):7-16. doi: 10.7519/j.issn.1000-0526.2010.01.002 [8] Gao S T, Wang X R, Zhou Y S.Generation of generalized moist potential vorticity in frictionless and moist adiabatic flow.Geophys Res Lett, 2004, 31:L12113, doi: 10.1029/2003GL019152. [9] 周玉淑, 曹洁, 王东海.非均匀饱和广义湿位涡在暴雨分析与预测中的应用.应用气象学报, 2007, 18(6):754-759. doi: 10.11898/1001-7313.200706115 [10] 段廷扬, 邓国, 王东海.广义湿位涡与暴雨落区预报的诊断分析.大气科学, 2007, 31(6):1301-1307. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706025.htm [11] 高守亭, 周玉淑, 雷霆, 等.北京城市夏季高温高湿天气过程分析及动力识别.地球科学, 2005, 35(增刊Ⅰ):107-114. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2005S1010.htm [12] 寿绍文, 励申申, 寿亦萱, 等.中尺度大气动力学.北京:高等教育出版社, 2009:249-251. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [13] 张腾飞, 普贵明, 李燕.一次低涡切变影响云南大雨过程分析.气象科技, 2004, 32(增刊):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ2004S1002.htm [14] 鲁亚斌, 郭荣芬, 张腾飞, 等.一次滇中暴雨中尺度对流系统特征分析.气象科学, 2005, 25(4):376-384. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200504006.htm [15] 鲁亚斌, 张腾飞, 徐八林, 等.一次孟加拉湾风暴和冷空气影响下滇西大暴雨中尺度分析.应用气象学报, 2006, 17(2):201-206. doi: 10.11898/1001-7313.20060211 [16] 张腾飞, 尹丽云, 张杰, 等.云南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi: 10.11898/1001-7313.20130209 [17] 孙淑清, 周玉淑.近年来我国暴雨中尺度动力分析研究进展.大气科学, 2007, 31(6):1171-1188. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706014.htm [18] 寿绍文.位涡理论及其应用.气象, 2010, 36(3):9-18. doi: 10.7519/j.issn.1000-0526.2010.03.002 [19] 高守亭, 雷霆, 周玉淑, 等.强暴雨系统中湿位涡异常的诊断分析.应用气象学报, 2002, 13(6):662-670. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020687&flag=1 [20] 李国平, 刘行军.西南低涡暴雨的湿位涡诊断分析.应用气象学报, 1994, 5(3):354-360. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940361&flag=1 [21] 安洁, 张立凤.暴雨过程中湿位涡的中尺度时空特征.气象科学, 2004, 24(1):72-80. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SDKX200512002041.htm