Numerical Simulation and Flight Observation of Stratiform Precipitation Clouds in Spring of Shanxi Province
-
摘要: 采用中国气象科学研究院 (CAMS) 中尺度云参数化模式对2010年4月20日山西省一次春季层状降水云系的宏微观结构,特别是垂直方向上的微物理结构进行了数值模拟和分析。利用携带云粒子探测设备的飞机对该次层状云系进行了两次云物理探测飞行,并将飞机探测所获取的数据和图像资料与数值模拟结果进行了对比研究。模拟结果显示:该次降水过程以层状冷云降水为主,云中过冷水含量丰富,云系存在明显的3层结构,地面降水主要来自于云中高层冰晶、雪、霰等冰相粒子的融化和低层云水的转化。数值模拟与飞机探测对比分析显示,高空温度、湿度和高度的配置两者基本一致,数值模拟不同高度的云粒子相态、垂直方向云水比含水量与飞机探测获取的云粒子图像和云液态水含量的垂直结构基本吻合,但数值模拟的云中各种水成物粒子出现的高度较飞机探测偏高。Abstract: The CAMS meso-scale cloud model is introduced and operationally applied since 2009 in Shanxi Province. The macro and micro structure of stratiform precipitation clouds, especially the vertical micro-physical structure are simulated and analyzed for a spring stratiform precipitation process in Shanxi Province on 20 April 2010 using the model. Two cloud physical detection flights are carried out by using weather modification plane with equipments of droplet measurement technologies (DMT) in the same place during the same period of the day. The data and images from flight detection and results of numerical simulation are compared and studied. Simulation results show that the precipitation process mainly comes from cold stratiform cloud. The cloud contains a lot of supercooled water, and the thickness of the rich supercooled water layer is about 4000 meters. The temperature of the supercooled layer is about 0 to-40℃, and the ratio content of the supercooled cloud water is about 0.1—0.7 g·kg-1 with some ice crystals distributed unevenly. The structures of stratus precipitation cloud can be roughly divided into three layers. The first layer (upper layer) is mainly composed of ice crystals; snow, sleet and supercooled cloud water are mixed in the second layer (middle layer); and the third layer (lower layer) is mainly of liquid raindrops. The vertical distribution and the transformation of different hydrometers in different stages of the precipitation are analyzed. The precipitation mainly comes from the melting of the ice phase particles such as ice crystals, snow, sleet and the transformation of liquid cloud droplets. Comparison of the numerical simulation results and the plane observation shows that the temperature and altitude relationship are in good agreement. The simulated vertical structure of the different cloud particles phase and the vertical distribution of the cloud liquid water ratio content are nearly the same as the vertical distribution of different cloud particles images and the cloud liquid water content of the flight detection. The difference is that the simulated height where various hydrometeors appears is higher than the actual flight detection.
-
表 1 2010年4月20日两次飞行飞机探测与数值模拟温度、高度对照表
Table 1 The temperature and height contrast references of the two-flight detections and numerical simulation on 20 April 2010
层次 第1次 第2次 飞机探测 数值模拟 飞机探测 数值模拟 0℃层 3075~3102 m 3100 m附近 2981~3130 m 3100 m附近 -5℃层 4234~4337 m 4300 m附近 4503~4565 m 4500 m附近 -10℃层 5600~5633 m 5600 m附近 5750~5782 m 5600 m附近 -
[1] 顾震潮.云雾降水物理基础.北京:科学出版社, 1980. [2] 胡志晋.层状云人工增雨机制、条件和方法的探讨.应用气象学报, 2001, 12(增刊):10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1001.htm [3] 洪延超, 周非非."催化供给"云降水形成机理的数值模拟研究.大气科学, 2005, 29(6):885-896. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506004.htm [4] 史月琴, 楼小凤, 邓雪娇, 等.华南冷锋云系的中尺度和微物理特征模拟分析.大气科学, 2008, 32(5):1019-1036. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805002.htm [5] 孙晶, 楼小凤, 胡志晋, 等.CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 19(3):315-325. doi: 10.11898/1001-7313.20080307 [6] 胡志晋.关于空中水资源和人工增雨潜力的估算问题.人工影响天气, 1999, 12:53-55. [7] 洪延超, 周非非.层状云系人工增雨潜力评估研究.大气科学, 2006, 30(5):913-926. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200605019.htm [8] 陈秋萍, 曾光平, 冯宏芳, 等.对流云总降水量和降水效率估测.应用气象学报, 2005, 16(2):260-263. doi: 10.11898/1001-7313.20050232 [9] 陈万奎, 严采蘩.冰相雨胚转化水汽密度差的实验研究.应用气象学报, 2001, 12(增刊):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1003.htm [10] 陈文选, 王俊, 刘文, 等.一次冷涡过程降水的微物理机制分析.应用气象学报, 1999, 10(2):190-198. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990258&flag=1 [11] 汪学林, 秦元明, 吴宪君, 等.层状云中对流泡特征及其在降水场中的作用.应用气象学报, 2001, 12(增刊):146-150. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1018.htm [12] 雷恒池, 魏重, 沈志来, 等.微波辐射计探测降雨前水汽和云液水.应用气象学报, 2001, 12(增刊):73-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htm [13] 李宏宇, 马建立, 马永林, 等.北京2008年奥运会开幕日云、降水特征及人工影响天气作业分析.气候与环境研究, 2011, 16(2):175-187. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201102008.htm [14] 陶玥, 洪延超.霰粒子下落速度对云系及降水发展影响的数值研究.气象学报, 2009, 67(3):370-381. doi: 10.11676/qxxb2009.036 [15] 何观芳, 胡志晋.不同云底温度雹云成雹机制及其引晶催化的数值研究.气象学报, 1998, 56(1):31-45. doi: 10.11676/qxxb1998.003 [16] 李宏宇, 王华, 洪延超.锋面云系降水中的增雨潜力数值研究.大气科学, 2006, 30(2):341-350. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200602015.htm [17] 胡志晋, 楼小凤, 刘奇俊, 等. 显式云与降水模式//CAMS大气数值预报模式系统研究. 北京: 气象出版社, 2004. [18] 孙晶, 楼小凤, 胡志晋, 等.梅雨暴雨对流系统的中小尺度结构特征个例模拟分析.大气科学, 2007, 31(1):1-18. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200510001293.htm