Model and Generation of Weather Forecast Analytic Data
-
摘要: 将原始数据转换为分析型数据,增强用户对海量数据的分析能力,是数据仓库技术最核心、最有价值的思想,也是数据仓库在气象领域应用的基础。该文针对天气预报领域数据空间性、瞬变性、物理性和多尺度性等特点,提出了五元组描述的天气预报分析型数据概念模型;总结了生成分析型数据的固定区域统计、划分区域统计、基本天气系统识别和天气学概念模型识别4种聚集变换,并对其关键技术进行了讨论。提出了基本天气系统自动识别的滤波-划分-测量算法,探讨了针对气象数据特点的模糊空间关系,定义了进行天气学概念模型识别的空间模糊产生式规则,并针对空间数据给出了定位条件等扩展。Abstract: To solve the problem of "information exploration" in operational weather forecast, building a data warehouse to help forecaster's analysis is necessary. The key and most valuable idea is to change raw data to analytic data, include extracting useful data, making data clean, and aggregating data to rough granularity data. Usually the meteorological data got in operational weather forecast is processed, clean and canonical. So the main process is "aggregation" to concentrate the weather information to fewer data which have clear physical meaning.A conceptual model of weather analytic data is suggested with a pentagon tuple considering the spatial, transitional, physical and multi-scale natures of meteorological data. The pentagon tuple refers to ID (identification), SA (spatial attributes), EA (entity attributes), TA (time attributes) and PA (physical attributes), including several detailed attributes set each. Although meteorological data is field data, forecasters usually use spatial object data to analyze the weather systems. So the main work of changing raw data to analytic data is identifying spatial objects from field data.Four aggregations arithmetics to change raw data to analytic data are suggested: Statistics for fixed region, statistics for given spatial or temporal partitions, identification of basic weather systems and identification of weather conceptual models. The former two are relatively simple statistics, while the latter two are complex for mutative spatial object and they are discussed in detail.Basic weather systems include region of high/low, center of high/low and trough/ridge in a data field. A filtering-dividing-measuring arithmetic is suggested. Filtered with a Mexican-hat function, the trough/ridge become high/low region and easier to identify, and then the high/low region are divided from the filtered field, with some arithmetics adopted to tread with multi-scale problems of meteorological field. At last the divided regions are measured to get area, extreme value, length, width, aspect ratio (width/length), geometry center, extreme data location, points of central line, including all attributes of SA, EA, TA and PA. If the aspect ratio is smaller than a threshold, the region will be identified as a trough or ridge, and the central line is the trough or ridge line.A knowledge base system with spatial fuzzy production rule is suggested for identifying weather conceptual models (e.g., cold front), and the rational process of this rule is described. 4 topological relations, several order relations, measure relations and their subjection functions are suggested. The conclusion of the rules is expanded to spatial objects with a result-spatial-object.
-
图 3 对2012年7月7日20:00北京及河北北部LAPS地面散度场的划分及测量
(a) 划分区域,(b) 测量得到的高、低中心和槽脊线 (G为高中心,D为低中心;蓝线为脊线,红线为槽线)
Fig. 3 Result of dividing and measuring of LAPS surface divergence of Beijing and north part of Hebei at 2000 BT 7 July 2012
(a) regions by dividing, (b) extreme center, trough and ridge line (G denotes high center, D denotes low center, blue line denotes ridge, red line denotes trough)
图 5 对2009年6月1日08:00北京地区LAPS地面散度场的划分及天气系统分析
(a) 划分区域与自动气象站风相比,(b) 测量得到的天气系统分析 (G为辐散中心,D为辐合中心;蓝线为辐散线,红线为辐合线)
Fig. 5 Result of dividing and weather systems of LAPS surface divergence of Beijing at 0800 BT 1 June 2009
(a) regions by dividing vs wind in situ, (b) basic weather systems vs wind in situ (G denotes divergence center, D denotes convergence center; blue line denotes divergence line, red line denotes convergence line)
-
[1] 谭晓光.数据仓库技术在天气预报决策中的应用探讨.应用气象学报, 2006, 17(3):325-332. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060358&flag=1 [2] 李景文, 田丽亚, 张燕, 等.面向对象的空间数据模型设计方法.地理空间信息, 2011, 9(5):9-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201105005.htm [3] 刘亚彬, 刘大友, 王飞.空间对象的几何表示.计算机科学, 2003, 30(3):62-64. http://www.cnki.com.cn/Article/CJFDTOTAL-KSCL200101003.htm [4] 刘瑜, 龚咏喜, 张晶, 等.地理空间中的空间关系表达和推理.地理与地理信息科学, 2007, 23(5):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XIXY201111232.htm [5] 满君丰, 刘强, 杨鼎.空间数据的表示方法研究.计算机应用, 2004, 24(11):97-99. doi: 10.3969/j.issn.1001-3695.2004.11.034 [6] 王宏勇, 郭建星.空间运动对象与时空数据类型研究.地理与地理信息科学, 2005, 21(5):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200505001.htm [7] 张英, 邵峰晶, 孙仁诚.面向对象的四元组时空数据模型.四川大学学报:工程科学版, 2007, 39(增刊):115-118. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2007S1027.htm [8] 傅京孙.人工智能及其应用.北京:清华大学出版社, 1987. [9] 何新贵.模糊知识处理的理论与技术 (第二版).北京:国防工业出版社, 1998. [10] 蔡少华, 翟战强.GIS基础空间关系分析.测绘工程, 1999, 8(2):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC199902007.htm [11] 吴长彬, 闾国年.空间拓扑关系若干问题研究现状的评析.地球信息科学学报, 2010, 12(4):524-531. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201004013.htm [12] 寇振华, 应新洋, 周国兵.GIS中拓扑关系及空间推理研究.计算机应用研究, 2005(5):97-99. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ20050500W.htm [13] 郭庆胜, 丁虹, 刘浩, 等.面状目标之间空间拓扑关系的组合式分类.武汉大学学报:信息科学版, 2005, 30(8):728-732. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200508016.htm [14] 郭庆胜, 陈宇箭, 刘浩.线与面的空间拓扑关系组合推理.武汉大学学报:信息科学版, 2005, 30(6):529-532. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200506015.htm [15] Egenhofer M J, Herring J R.A Mathematical Framework for the Definition of Topological Relationships//Brassel K E, KishimotoH.4th International Symposium on Spatial Data Handling.Zurich:Department of Geography, University of Zurich, 1990:803-813. [16] 韩雷, 郑永光, 王洪庆, 等.基于数学形态学的三维风暴体自动识别方法研究.气象学报, 2007, 65(5):805-814. doi: 10.11676/qxxb2007.076