Effects of Meteorological Elements on Solar Cell Temperature
-
摘要: 温度升高会引起光伏电池发电效率下降,电池板温度是确定温度折减系数的必要条件,目前我国尚没有充足的外场实测电池板温度数据。该文基于北京南郊太阳能试验站2010年全年逐时电池板温度、气温、地表温度、斜面和水平辐照度实测数据,分析了电池板温度随时间的变化及其与各气象要素的关系。结果表明:电池板温度与气温和斜面辐照度的综合相关或与地表温度的线性相关最好,但实测数据不易获得;电池板温度与气温的线性相关较好,数据较易获得且质量有保证,从现实可行性考虑,是推算电池板温度最实用的相关方程;电池板温度与气温和水平辐照度的综合相关可以作为辅助方程,用于推算气温较高情况下的电池板温度。基于2010年电池板温度实测数据和加权计算的方法,得到北京地区年平均光伏发电温度折减系数约为2%,最高可达到13.3%。
-
关键词:
- 太阳能电池板温度;
- 气温;
- 地表温度;
- 辐照度;
- 光伏发电温度折减系数
Abstract: Rising temperature causes the degradation of photovoltaic cell power efficiency, and the solar cell temperature is an essential factor to determine temperature reduction coefficients. At present, there are still no sufficient field-recorded data of solar cell temperature in China, and in the design of photovoltaic power plants in different areas, climate background isn't considered enough when the temperature reduction coefficients is determined. Based on observational solar cell temperature, air temperature, ground temperature, inclined and horizontal solar radiation data observed in southern suburb of Beijing, changes of solar cell temperature with time and other meteorological elements are analyzed, and an empirical equation is established for calculating the solar cell temperature. From the point of temporal variation, the solar cell temperature and air temperature or ground temperature are related to a level of consistency, but there are some seasonal differences. For spring and summer (March to August), solar cell temperature and ground temperature are close, which are significantly higher (above 6℃) than air temperature. For autumn and winter (September to December, and January to February) solar cell temperature is significantly higher than that of ground temperature and air temperature. From the point of correlation, comprehensive correlation of solar cell temperature with air temperature and inclined irradiance, and the linear correlation of solar cell temperature with ground temperature are the best, with correlation coefficients exceeding 0.90, and the physical connection are accord with the temperature changes, which are the best choices to calculate solar cell temperature and the temperature reduction coefficient. However, the disadvantages of these equations are that the inclined irradiance or ground temperature data are not easily accessed. The linear correlation of solar cell temperature with air temperature is better, with the correlation coefficient of 0.88, and air temperature is easy to get and the quality is good, which is considered the most practical equation. However, the disadvantage of this equation is that two factors are not the same and the stability of the equation is poor. Comprehensive correlation of solar cell temperature with air temperature and horizontal irradiance is good, with the correlation coefficient being 0.75, which can be used as empirical equation to calculate solar cell temperature at high air temperature conditions. Based on the recorded cell temperature of one year and the weighted calculation, the conclusion is that the annual temperature reduction coefficient of photovoltaic power generation is around 2% in Beijing, and the maximum can reach 13.3%. -
表 1 试验站2010年白天板温、气温和地表温度统计结果 (单位:℃)
Table 1 Statistics of daytime solar cell temperature, air temperature and ground temperature in 2010 at experiment station (unit:℃)
时段 气温 地表温度 板温 平均值 标准差 平均值 标准差 平均值 标准差 春季 13.82 8.98 21.10 13.99 20.40 12.50 夏季 27.44 4.52 33.54 10.51 33.68 9.64 秋季 14.34 8.21 16.55 10.43 22.55 13.12 冬季 -0.83 5.51 2.72 8.07 6.96 10.42 全年 14.65 12.22 19.74 15.67 21.73 14.84 表 2 试验站2010年典型日的天气状况
Table 2 Weather conditions of typical daytime in 2010 at experiment station
日期 天气状况 平均总云量/% 14:00能见度/km 平均风速/(m·s-1) 01-08 阴天、有雾霾 100 12 0.9 04-08 多云 90 20 3.8 07-08 晴间多云 53 30 1.4 10-08 晴间多云、有雾霾 43 8 2.1 表 3 2009年8—10月的板温实测值与推算值及其相关系数
Table 3 Comparison of calculated Tcell with observed Tcell in Aug, Sep and Oct of 2009 with their correlation coefficients
板温 8月 9月 10月 相关系数 平均值/℃ 最低值/℃ 最高值/℃ 平均值/℃ 最低值/℃ 最高值/℃ 平均值/℃ 最低值/℃ 最高值/℃ 实测值 33.7 13.5 57.8 28.6 10.5 54.5 25.8 3.6 50.1 式 (6) 推算 34.9 22.4 45.1 30.0 18.4 38.0 24.9 10.7 36.6 0.858 式 (5) 推算 30.6 16.5 42.2 28.3 11.6 48.5 24.9 5.7 42.3 0.958 式 (4) 推算 34.0 16.1 55.2 28.4 12.2 46.9 24.2 5.3 43.9 0.968 式 (3) 推算 33.3 15.8 56.4 28.5 11.8 51.1 26.0 5.3 50.1 0.974 表 4 试验站2010年白天逐时实测板温统计
Table 4 Statistic of hourly real-time solar cell temperature at daytime in 2010 of experiment station
平均值 最高值 最低值 白天时数 大于25℃时数 大于25℃的平均温度 21.73℃ 58.27℃ -16.32℃ 4222 h 1787 h 35.77℃ -
[1] 杨金焕.太阳能光伏发电应用技术.北京:电子工业出版社, 2009. [2] Wenham S R, Green M A, Watt M E, 等. 应用光伏学. 狄大卫, 高兆利, 韩见殊, 等译. 上海: 上海交通大学出版社, 2008. [3] Roger A M, Jerry V. 光伏系统工程: 第3版. 王一波, 廖华, 伍春生, 译. 北京: 机械工业出版社, 2012. [4] 杨萍, 刘伟东, 王启光, 等.近40年我国极端温度变化趋势和季节特征.应用气象学报, 2010, 21(1):29-36. doi: 10.11898/1001-7313.20100104 [5] 于淑秋.近50年我国日平均温度的气候变化.应用气象学报, 2005, 16(6):787-793. doi: 10.11898/1001-7313.20050603 [6] 周国华, 王盘兴, 罗小莉, 等.基于160站资料的我国表面气温异常特征.应用气象学报, 2011, 22(3):283-291. doi: 10.11898/1001-7313.20110304 [7] 周云, 钱忠华, 何文平, 等.我国夏季高温极值的概率分布特征及其演变.应用气象学报, 2011, 22(2):145-151. doi: 10.11898/1001-7313.20110203 [8] 董立新, 杨虎, 张鹏, 等.FY-3A陆表温度反演及高温天气过程动态监测.应用气象学报, 2012, 23(2):214-222. doi: 10.11898/1001-7313.20120210 [9] 中国气象局.地面气象观测规范.北京:气象出版社, 2003. [10] 李维京, 李怡, 陈丽娟, 等.我国冬季气温与影响因子关系的年代际变化.应用气象学报, 2013, 24(4):385-396. doi: 10.11898/1001-7313.20130401 [11] Ross R G Jnr, Smokler M I.Flat-Plate Solar Array Project-Final Report, Vol.Ⅵ: Engineering Sciences and Reliability.JPL Pub No.86-31, 1986. [12] 李耀宁, 李艳, 李珊珊.地温观测常见问题及报表数据处理方法.气象科技, 2011(3): 348-351. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201103016.htm [13] 张慧智, 史学正, 于东升, 等.中国土壤温度的空间插值方法比较.地理研究, 2008, 27(6):1299-1307. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200806009.htm [14] 邵全琴, 孙朝阳, 刘纪远, 等.中国城市扩展对气温观测的影响及其高估程度.地理学报, 2009, 64(11):1292-1302. doi: 10.3321/j.issn:0375-5444.2009.11.002 [15] 马柱国, 符淙斌, 任小波, 等.中国北方年极端温度的变化趋势与区域增暖的联系.地理学报, 2003, 58(增刊):11-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1001.htm