Characteristic Analysis of Continuing Current Process and M-component in Artificially Triggered Lightning
-
摘要: 在广州野外雷电试验基地,对2008年和2011年夏季人工触发闪电回击之后的14个连续电流过程和43个M分量的通道底部电流、电场变化和通道亮度进行了同步测量和分析。结果表明:M分量的电流、快慢电场变化和亮度变化波形均近似对称;触发闪电连续电流过程的持续时间、转移电荷量、电流平均值的几何平均值分别为22 ms,6.0 C和273 A;M分量的幅度、转移电荷量、半峰值宽度、上升时间、持续时间的几何平均值分别为409 A,205 mC,520 μs,305 μs和1.6 ms;连续电流持续时间与M分量的个数、相邻M分量之间的时间间隔均存在显著的正相关关系。Abstract: The continuing current (CC) process of cloud-to-ground lightning is a discharge process in which charges continuously transfer to ground along the lightning channel after return stroke. The magnitude of CC is small, but the duration of CC is commonly long, so CC often causes lightning disaster. It's very hard to get current data due to the randomness of lightning. Artificially triggered lightning, in which the time and location of triggered lightning can be controlled, is an effective way to measure current of lightning. Artificially trigged lightning is different from nature lightning which only has CC after return stroke, yet artificially trigged lightning has CC and initial continuous current (ICC) process both. Only the CC is analyzed using simultaneous observations of current, electric field change and chnnel luminosity by coaxial shunt, fast and slow antenna, and high-speed camera in Guangzhou Field Experiment Site for Lightning Research and Testing, Conghua, Guangdong, China. Then, photoelectric character and characteristic parameters of 14 CC and 43 M-components after return strokes of triggered lightning observed in summer in 2008 and 2011 are analyzed. The relationship between some characteristic parameters of CC and M-component is analyzed, too.The current waveforms of CC after return strokes are continuous and change slowly. Usually, there are current pulses ranging in size superimposed on CC waveforms. The slow electric field waveforms of CC are slowly changing, too. The lightning channel below the cloud is always luminescent during CC. The current waveforms, fast and slow electric field waveforms and channel luminosity variation waveforms of M-components are approximate symmetrical. The geometric mean of duration, charge transferred to ground, average current and action integral for CC are 22 ms, 6.0 C, 273 A, 4187 A2s, respectively. The geometric mean of magnitude, charge transferred, half peak width, rise time (10%-90%), duration, preceding CC level, inter-pulse interval, action integral for M-components are 409 A, 205 mC, 520 μs, 305 μs, 1.6 ms, 310 A, 6.5 ms, 465 A2s, respectively. There are very remarkable positive correlations between the duration of continuing current and number of M-components, and between the duration of continuing current and inter-pulse interval of M-components. The correlation coefficients are 0.83 and 0.75, and both pass the significant verification of 0.01 level.
-
图 4 触发闪电M分量特征参数分布
(a) M分量幅度 (IM), (b) 转移的电荷量 (QM), (c) 半峰值宽度 (TH), (d)10%至90%上升时间 (TR), (e) 持续时间 (TCC), (f) 比能量, (g) M分量前电流值 (IC), (h) 相邻M分量之间的时间间隔 (TI)
Fig. 4 Distributions of characteristic parameters of M-component
(a) amplitude (IM), (b) charge transferred to ground (QM), (c) half-peak width (IH), (d)10%-90% rise time on wave front (TR), (e) duration (TCC), (f) action integral, (g) current level immediately preceding the M-component (IC), (h) interval between successive M-components (TI)
表 1 触发闪电连续电流参数统计表
Table 1 Characteristic parameters of continuing current in triggered lightning
闪电编号 回击序号 TCC/ms QCC/C Imean/A 比能量/A2s T200803 2 4 1.1 282 760 T200803 4 3 1.5 487 2039 T200803 5 4 3.3 837 10377 T200803 6 7 4.8 683 8687 T200803 7 307 21.0 69 8486 T200803 8 18 15.6 866 30213 T201102 1 27 5.1 189 2585 T201105 1 3 0.3 107 70 T201107 1 249 52.3 210 15362 T201108 4 3 0.5 153 162 T201108 6 591 79.4 135 13728 T201108 7 27 17.8 667 45291 T201108 8 36 11.0 307 8642 T201110 1 99 15.0 153 5875 表 2 触发闪电与自然地闪连续电流过程持续时间对比
Table 2 Comparison of continuing current duration in triggered lightning with results of nature lightning
表 3 本研究M分量特征参数与他人结果对比
Table 3 Comparison of M-component parameters in this paper with other results
表 4 触发闪电连续电流的特征参数与M分量的特征参数的相关系数
Table 4 Correlation coefficients of continuing current parameters and M-component parameters
特征参数 N IM QM TH TR TM 比能量 IC TI TCC 0.83 -0.39 -0.25 0.49 0.48 0.45 -0.34 -0.34 0.75 QCC 0.84 -0.39 -0.16 0.65 0.65 0.61 -0.27 -0.35 0.92 Imean -0.38 0.80 0.77 -0.23 -0.17 -0.41 0.84 0.78 -0.27 比能量 0.15 0.13 0.55 0.45 0.55 0.20 0.38 0.20 0.04 -
[1] 王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000:131-133. [2] Rakov V A, Uman M A.Lightning Physics and Effects.Cambridge:Cambridge University Press, 2003. [3] Hagenguth J H, Anderson J G.Lightning to the Empire building Part Ⅲ.AIEE, 1952, 71(PtⅢ):641-649. [4] Kitagawa N, Brook M, Workman E J.Continuing currents in cloud-to-ground lightning discharges.J Geophys Res, 1962, 67(2):637-647. doi: 10.1029/JZ067i002p00637 [5] Shindo T, Uman M A.Continuing current in negative cloud-to-ground lightning.J Geophys Res, 1989, 94(4):5189-5198. [6] Ballarotti M G, Saba M M F, Jr O P.High-speed camera observations of negative ground flashes on a millisecond-scale.Geophys Res Lett, 2005, 32, L23802, doi: 10.1029/2005GL023889. [7] 张翠华, 张义军, 张广庶, 等.地闪连续电流特征的统计分析.高原气象, 2000, 19(3):371-378. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200003011.htm [8] 张阳, 张义军, 孟青, 等.北京地区正地闪时间分布及波形特征.应用气象学报, 2010, 21(4):442-449. doi: 10.11898/1001-7313.20100407 [9] Saba M M F, Jr O P, Ballarotti M G.Relation between lightning return stroke peak current and following continuing current.Geophys Res Lett, 2006, 33, L23807, doi: 10.1029/2006GL027455. [10] Brook M, Kitagawa N, Workman E J.Quantitative study of return strokes and continuing currents in lightning discharges to ground.J Geophys Res, 1962, 67(2), 649-659. doi: 10.1029/JZ067i002p00649 [11] Malan D J, Collens H.Progressive Lightning, Ⅲ, the Fine Structure of Return Lightning Strokes.Proc R Soc A Math Phys Sci, 1937, 162:175-203. doi: 10.1098/rspa.1937.0175 [12] Thottappillil R, Rakov V A, Uman M A.K and M changes in close lightning ground flashes in Florida.J Geophys Res, 1990, 95:18631-18640. doi: 10.1029/JD095iD11p18631 [13] Thottappillil R, Goldberg J, Rakov V, et al.Properties of M components from currents measured at triggered lightning channel base.J Geophys Res, 1995, 100(12):25711-25720. [14] 吕伟涛, 张义军, 周秀骥, 等.火箭触发闪电通道的亮度特征分析.应用气象学报, 2007, 65(6):983-993. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200706015.htm [15] Fisher R J, Schnetzer G H, Thottappillil R, et al.Parameters of triggered-lightning flashes in Florida and Alabama.J Geophys Res, 1993, 98:22887-22908. doi: 10.1029/93JD02293 [16] 赵阳, 郄秀书, 陈明理, 等.人工触发闪电中的M分量特征.高原气象, 2011, 30(2):508-517. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102028.htm [17] 张义军, 杨少杰, 吕伟涛, 等.2006—2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi: 10.11898/1001-7313.20120501 [18] 李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi: 10.11898/1001-7313.20080403 [19] 肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi: 10.11898/1001-7313.20130407 [20] 李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi: 10.11898/1001-7313.20100113 [21] 蒋如斌, 郄秀书, 王彩霞, 等.峰值电流达几千安量级的闪电M分量放电特征及机理探讨.物理学报, 2011, 60(7):079201-1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201107130.htm [22] Rakov V, Thottappillil R, Uman M, et al.Mechanism of the lightning M component.J Geophys Res, 1995, 100(12):25701-25710. [23] 张义军, 吕伟涛, 张阳, 等.广州地区地闪放电过程的观测及其特征分析.高电压技术, 2013, 39(2):383-392. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302020.htm