Onset Corona Field Based on Isolated Metal Tip
-
摘要: 为了得到金属尖端在发生电晕放电时尖端处的电场强度,该文首先采用实验室实验得到不同高度、不同形状、不同材质的金属尖端发生电晕放电时的环境电场阈值;再采用有限元法计算二维泊松方程,得到尖端处电晕触发阈值,由此得出以下结论:环境电场阈值随金属尖端高度的增大基本呈线性减小趋势,随着尖端越来越尖,环境电场阈值呈先减小后增大的变化趋势;高度、形状对金属物尖端处电晕触发阈值无影响,尖端处电晕阈值为定值;给出尖端处电晕触发阈值为158.75 kV·m-1与空间分辨率的拟合公式,可为今后电晕放电数值模拟中判断电晕放电的起始时刻提供参考。Abstract: Corona discharges characterized by much lower current densities are often generated in a strong atmospheric electric field. What's more, corona discharges are very important because the corona charge layers can change the distribution of the electric field near the ground and affect conditions of the initiation and development of an upward leader near different tall objects. Therefore, corona discharges have attracted the attention of scholars at home and abroad, especially in the onset corona field. However, how to effectively show corona emission threshold is still a difficult problem in the study of atmospheric electricity.In order to obtain the electric field strength at the tip of metal in the case of corona discharge, the onset corona voltages must be obtained by laboratory test for different heights, shapes and materials of metal tips which are arranged on the middle of lower plate of two parallel metal plates. Dimensions of two horizontal plates are 1.2 m by 1.2 m and the distance between them is 1 m. Then environmental threshold electric fields are calculated for different heights, shapes and materials of metal tips. The two-dimensional Poisson equation is solved using finite element method and the corona emission thresholds at the tip of different types of metal tips are obtained.Effects on threshold electric fields by the height, material and shape are discussed, respectively. The following conclusions can be drawn from the experimental study. First, the environmental threshold fields are basically a linear decrease with heights of metal. The environmental threshold fields decrease first and then increase when metal tips are becoming sharp increasingly. Second, the height and shape of mental tips have no effects on corona emission threshold at the tip of metal tips. The corona threshold at the tip of mental tip is a constant. Finally, the corona triggering threshold is determined which is Ec=158.75 kV·m-1 and the fitting function between corona emission threshold and spatial resolution is given. It will provide a reference for the judgment of starting moment of corona discharge for the future numerical simulation of corona discharge.
-
表 1 不同高度、不同形状的铁质尖端发生电晕放电时上板电晕电压值 (单位:kV)
Table 1 Corona voltage value of iron material rods with different heights and different shapes (unit:kV)
铁棒类型 第1次 第2次 第3次 第4次 第5次 平均值 Ha=25 cm -25.6 -26.0 -26.3 -25.7 -26.1 -25.94 Ha=30 cm -23.6 -23.2 -23.4 -22.9 -23.0 -23.22 Ha=39 cm -20.6 -20.1 -20.3 -20.6 -20.0 -20.32 Ha=50 cm -17.6 -17.1 -17.5 -17.8 -17.6 -17.52 Ha=30 cm,Hb=2.3 cm -22.4 -21.9 -22.6 -22.3 -22.4 -22.32 Ha=30 cm,Hb=3.0 cm -23.3 -23.5 -23.3 -23.7 -23.1 -23.38 Ha=30 cm,Hb=4.5 cm -24.1 -24.4 -24.1 -23.9 -24.2 -24.14 Ha=30 cm,Hb=6.0 cm -25.6 -25.1 -25.4 -24.9 -25.1 -25.22 表 2 同一形状、同一高度、不同材质的尖端上板电晕电压值 (单位:kV)
Table 2 Corona voltage value of lightning rod with the same shape, the same height and different materials (unit:kV)
材质 第1次 第2次 第3次 第4次 第5次 平均值 铁棒 -23.6 -23.2 -23.4 -22.9 -23.0 -23.22 铝棒 -22.6 -22.9 -23.2 -22.5 -22.7 -22.78 铜棒 -22.9 -22.3 -22.6 -22.3 -22.6 -22.54 表 3 不同高度、不同形状的铁质尖端发生电晕放电时尖端处触发阈值 (单位:kV·m-1)
Table 3 Corona field threshold of iron material rods with different heights and different shapes (unit:kV·m-1)
类型 第1次 第2次 第3次 第4次 第5次 平均值 Ha=25 cm 132.510 134.581 136.133 133.028 135.098 134.270 Ha=30 cm 135.715 133.415 134.565 131.690 132.265 133.529 Ha=39 cm 136.773 133.453 134.781 136.773 132.789 134.914 Ha=50 cm 138.779 134.836 137.990 140.356 138.779 138.148 Ha=30 cm, Hb=2.3 cm 134.861 136.065 131.850 134.258 134.861 134.379 Ha=30 cm, Hb=3.0 cm 135.335 136.496 135.335 137.658 134.173 135.799 Ha=30 cm, Hb=4.5 cm 133.992 135.660 133.992 132.880 134.548 134.215 Ha=30 cm, Hb=6.0 cm 138.772 136.062 137.688 134.977 136.062 136.712 表 4 不同形状、不同高度铁制金属物体尖端电晕电场阈值的相对误差 (单位:%)
Table 4 The relative error of corona field threshold of iron metal objects with different shapes and different heights (unit:%)
类型 第1次 第2次 第3次 第4次 第5次 Ha=25 cm 1.976 0.444 0.704 1.593 0.061 Ha=30 cm 0.395 1.307 0.456 2.583 2.158 Ha=39 cm 1.178 1.279 0.296 1.178 1.770 Ha=50 cm 2.662 0.255 2.078 3.829 2.662 Hb=2.3 cm 0.237 0.654 2.465 0.683 0.237 Hb=3.0 cm 0.114 0.973 0.114 1.832 0.746 Hb=4.5 cm 0.880 0.354 0.880 1.702 0.469 Hb=6.0 cm 2.658 0.652 1.855 0.151 0.652 表 5 同一形状、同一高度、不同材质的尖端发生电晕放电时尖端处触发值 (单位:kV·m-1)
Table 5 Corona field threshold of lightning rod with the same shape and the same height and different materials (unit:kV·m-1)
类型 第1次 第2次 第3次 第4次 第5次 平均值 铁棒 135.715 133.414 134.565 131.690 132.265 133.529 铝棒 129.965 131.690 133.415 129.380 130.540 130.980 铜棒 131.690 128.245 129.965 128.240 129.965 129.621 表 6 不同材质的尖端电晕电场阈值的相对误差 (单位:%)
Table 6 The relative error of corona field threshold of metal objects with different materials (unit:%)
类型 第1次 第2次 第3次 第4次 第5次 铁棒 0.395 1.307 0.456 2.583 2.158 铝棒 3.859 2.582 1.307 4.291 3.433 铜棒 2.582 5.121 3.859 5.435 3.859 -
[1] 王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000. [2] 吴亭, 吕伟涛, 刘晓阳, 等.北京地区不同天气条件下近地面大气电场特征.应用气象学报, 2009, 20(4):394-401. doi: 10.11898/1001-7313.20090402 [3] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi: 10.11898/1001-7313.20060619 [4] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi: 10.11898/1001-7313.20060504 [5] Standler R B, Winn W P.Effects of coronae on electric fields beneath thunderstorms.Quart J Roy Meteor Soc, 1979, 105(443):285-302. doi: 10.1002/(ISSN)1477-870X [6] Chauzy S, Raizonville P.Space charge layers created by coronae at ground level below thunderclouds:Measurements and modeling.Journal of Geophysical Research:Oceans, 1982, 87(C4):3143-3148. doi: 10.1029/JC087iC04p03143 [7] Chauzy S, Soula S.General interpretation of surface electric field variations between lightning flashes.Journal of Geophysical Research:Atmospheres, 1987, 92(D5):5676-5684. doi: 10.1029/JD092iD05p05676 [8] Whipple F J W.Modern views on atmospheric electricity.Quarterly Journal of the Royal Meteorological Society, 1938, 64(275):199-222. https://www.researchgate.net/publication/227738858_Modern_views_on_atmospheric_electricity [9] Toland R B, Vonnegut B.Measurement of maximum electric field intensities over water during thunderstorms.J Geophys Res, 1977, 82(3):438-440. doi: 10.1029/JC082i003p00438 [10] Whipple F J W, Scrase F J.Point discharge in the electric field of the earth.Geophysical Memoirs, H M S Meteorol Office, 1936, 68(7):1-20. [11] Chauzy S, Medale J C, Prieur S, et al.Multilevel measurement of the electric field underneath a thundercloud:1.A new system and the associated data processing.Journal of Geophysical Research:Atmospheres, 1991, 96(22):319-326. https://www.researchgate.net/publication/240485956_Multilevel_measurement_of_the_electric_field_underneath_a_thundercloud_I_-_A_new_system_and_the_associated_data_processing [12] Vonnegut B.Possible mechanism for the formation of thunderstorm electricity.Bull Amer Meteor Soc, 1953, 34:378-381. [13] Vonnegut B.Some facts and speculations concerning the origin and role of thunderstorm electricity.Meteorol Monogr, 1963, 5(27):224-241. https://www.researchgate.net/publication/312513798_Some_Facts_and_Speculations_Concerning_the_Origin_and_Role_of_Thunderstorm_Electricity [14] Chauzy S, Soula S, Despiau S.Ground coronae and lightning.Journal of Geophysical Research:Atmospheres, 1989, 94(D11):13115-13119. doi: 10.1029/JD094iD11p13115 [15] 郄秀书.雷暴下地面自然尖端电晕放电离子时空演变的数值模拟.地球物理学报, 1996, 39(增刊):43-51. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX6S1.005.htm [16] Standler R B, Winn W P.Effects of coronae on electric fields beneath thunderstorms.Quart J Roy Meteor Soc, 1979, 105(443):285-302. doi: 10.1002/(ISSN)1477-870X [17] Soula S.Transfer of electrical space charge from corona between ground and thundercloud:Measurements and modeling.Journal of Geophysical Research:Atmospheres, 1994, 99(D5):10759-10765. doi: 10.1029/93JD02596 [18] Aleksandrov N L, Bazelyan E M, Drabkin M M, et al.Corona discharge at the tip of a tall object in the electric field of a thundercloud.Plasma Physics Reports, 2002, 28(11):953-964. doi: 10.1134/1.1520289 [19] Bazelyan E M, Raizer Y P, Aleksandrov N L, et al, Corona processes and lightning attachment:The effect of wind during thunderstorms.Atmospheric Research, 2009, 94(3):436-447. doi: 10.1016/j.atmosres.2009.07.002 [20] 王才伟, 陈茜, 刘欣生, 等.雷暴云下部正电荷中心产生的电场.高原气象, 1987, 6(1):65-74. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198701006.htm [21] 逯曦, 张义军, 吕伟涛, 等.近地面电晕电流组网观测与数据分析.气象科技, 2010, 38(6):746-751. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201006019.htm [22] 赵中阔, 郄秀书, 张广庶, 等.雷暴云内电场探测仪及初步实验结果.高原气象, 2008, 27(4):881-887. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200804024.htm [23] Kasemir H W.Conference on Cloud Physics and Atmospheric Electricity of AMS.American Meteorological Society, Issaquah, Washington, 1978. [24] D'Alessandro F, Berger G.Laboratory studies of corona emissions from air terminals.Journal of Physics D:Applied Physics, 1999, 32(21):2785-2790. doi: 10.1088/0022-3727/32/21/311 [25] 张榴晨, 徐松.有限元法在电磁计算中的应用.北京:中国铁道出版社, 1996. [26] 史密斯 (Smith I M). 有限元方法编程 (第三版). 王崧, 译. 北京: 电子工业出版社, 2003. [27] 金建铭, 王建国, 葛德彪.电磁场有限元方法.西安:西安电子科技大学出版社, 1998. [28] 郭立新, 李江挺, 韩旭彪.计算物理学.西安:西安电子科技大学出版社, 2009. [29] Eriksson A J.The Lightning Ground Flash:An Engineering Study.University of KwaZulu-Natal, 1979. [30] Moore C B.Improved configurations of lightning rods and air terminals.Journal of the Franklin Institute, 1983, 315(1):61-85. doi: 10.1016/0016-0032(83)90107-2 [31] 郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2012, 12(1):136-151. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130207&flag=1 [32] 言穆弘, 郭昌明, 刘欣生.雷暴对流起电机制理论分析.大气科学, 1991, 15(2):120-128. http://www.cnki.com.cn/Article/CJFDTOTAL-YTWT1989S1045.htm [33] 言穆弘, 刘欣生.闪电先导静电场波形理论分析.应用气象学报, 1993, 4(2):185-191. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930233&flag=1