Effects of Different Soil Moistures on Photosynthetic Characteristics of Sunflower
-
摘要: 以食用向日葵为试验材料,大田试验采取人为控制土壤水分在胁迫、适宜和过湿 (土壤田间持水量的40%~54.9%,55%~69.9%和70%~90%) 条件下,研究了向日葵3个生育期 (二对真叶—花序形成期、花序形成—开花期、开花—成熟期) 的光合光响应特性。结果表明:在试验设置光强条件下,各生育期净光合速率随着光合有效辐射的增加而增加,同等的光合有效辐射下净光合速率也随着土壤水分的减少依次降低,尤其是随着光合有效辐射的增大愈加明显。土壤湿度对最大净光合速率和表观量子效率的影响并不是同步的,最大净光合速率随着土壤湿度的增加而增大,而表观量子效率在一定程度的水分胁迫情况下出现最大值。不同的土壤水分含量对光补偿点和光饱和点影响不同,光饱和点随着土壤水分的增加而增加,光补偿点却相反,表明水分胁迫使向日葵可利用光的范围缩小,而适宜水分则扩大了光的利用范围,更有利于干物质积累。暗呼吸速率随着植物的生长进程逐渐降低,不同生育期的水分胁迫均导致暗呼吸速率降低。Abstract:
The soil drought is one of key factors limiting photosynthesis in northwest areas of China. In order to understand the influence of drought stress on crop, the light response curves and several parameters of photosynthesis of sunflower are measured with Li-6400 Portable Photosynthesis System under three soil moisture grades: Arid soil, suitable soil moisture and wetter soil moisture (corresponding soil water contents are 40%-54.9%, 55%-69.9% and 70%-90%, respectively) in different development stages (two pairs of leaves-bud stage, bud stage-flowering stage, flowering stage-maturity stage). Results show that all coefficients of light response curve equations fitted using rectangular hyperbola model are above 0.99, meaning good compatibility between the model and the response process of photosynthesis of sunflower to light. The light response curves of sunflower growing under different soil moisture in different development stages show similar trends, the net photosynthetic rate (Pn) increases with photosynthetic active radiation rapidly at first and then slowly. For different development stages, changes of light response curves show a similar regulation with reduced soil moisture, but Pn of sunflower under wetter soil moisture is greater than that under suitable soil moisture and drought stress at the same photosynthetic active radiation, and differences are statistically significant with the photosynthetic active radiation increasing. Influences of soil moisture on the maximum net photosynthetic rate (Pmax) and apparent quantum efficiency are not synchronous. Pmax increases with soil moisture and apparent quantum efficiency under the condition of water stress in maximum. In the entire growth period of sunflower in the Hetao Irrigation District, light compensation point and light saturation point are 30.51-107.98 μmol·m-2·s-1 and 2260.8-3658.9 μmol·m-2·s-1, respectively. It shows that sunflower with high solar energy utilization efficiency is the typical sun plants, and is particularly fond of light. The effect of soil moisture content in light compensation point and light saturation point is different. The light saturation point increases with soil moisture, while light compensation point is the opposite. According to the variation of light compensation point and light saturation point, sunflower under suitable soil moisture not only expands the scope of the use of light but also is conducive to the accumulation of dry matter, sunflower under drought stress narrows the range of available light. The dark respiration rate (Rd) decreases gradually with plant growth, and decreases under drought stress in different development stages, which is conducive to reduce the influence of drought stress on dry matter accumulation of crops.
-
Key words:
- sunflower;
- development stages;
- photosynthetic parameters;
- soil moisture
-
图 2 向日葵不同发育期在不同土壤水分下的光合光响应曲线
(a) 二对真叶—花序形成期, (b) 花序形成—开花期, (c) 开花—成熟期
Fig. 2 The response curves of net photosynthetic rate to light intensity of sunflower under different soil moistures in different development stages
(a) two pairs of leaves-bud stage, (b) bud stage-flowering stage, (c) flowering stage-maturity stage
表 1 向日葵不同生育期光合观测时土壤含水量、曲线拟合度和平均净光合速率的比较
Table 1 The soil water content, curve fitting and net photosynthetic rate of sunflower in different development stages
参数 二对真叶—花序形成期 花序形成—开花期 开花—成熟期 T1 T2 T3 T1 T2 T3 T1 T2 T3 平均净光合速率/(μmol·m-2·s-1) 18.80 23.85 24.79 27.31 27.38 35.83 25.82 25.47 26.75 土壤含水量/% 52.80 64.23 76.68 50.33 63.34 84.43 49.18 66.91 81.56 曲线拟合度 0.996 0.999 0.999 0.998 0.998 0.999 1.000 0.999 0.999 表 2 向日葵不同发育期不同土壤水分条件下的光响应曲线特征参数
Table 2 Characteristic parameters of sunflower light response curves under different soil moistures in different development stages
参数 二对真叶—花序形成期 花序形成—开花期 开花—成熟期 T1 T2 T3 T1 T2 T3 T1 T2 T3 表观量子效率/(μmol·μmol-1) 0.0725 0.0685 0.0655 0.0767 0.0650 0.0727 0.0583 0.0593 0.0603 最大净光合速率/(μmol·m-2·s-1) 32.29 50.29 54.45 49.21 49.27 77.78 44.08 47.42 53.26 暗呼吸速率/(μmol·m-2·s-1) 5.34 6.42 6.25 3.69 3.12 2.25 2.05 1.73 2.49 光补偿点/(μmol·m-2·s-1) 91.05 107.11 107.98 55.52 51.05 32.01 37.19 30.51 42.86 光饱和点/(μmol·m-2·s-1) 2834.3 3541.3 3658.9 2284.5 2553.6 2705.9 2260.8 2258.8 2612.3 -
[1] 于贵瑞, 王秋凤.植物光合、蒸腾与水分利用的生理生态学.北京:科学出版社, 2010. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [2] 欧立军, 陈波, 邹学校.干旱对辣椒光合作用及相关生理特征的影响.生态学报, 2012, 32(8):2612-2619. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201208036.htm [3] 田育红, 刘鸿雁, 陆佩玲.山东禹城地区夏玉米生长与环境因子关系的初步分析.应用气象学报, 2003, 14(4):509-512. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030465&flag=1 [4] 刘建栋, 王馥棠, 于强, 等.华北地区冬小麦叶片光合作用模型在农业干旱预测中的应用研究.应用气象学报, 2003, 14(4):469-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030458&flag=1 [5] 马全林, 王继和, 纪永福, 等.固沙树种梭梭在不同水分梯度下的光合生理特征.西北植物学报, 2003, 23(12):2120-2126. doi: 10.3321/j.issn:1000-4025.2003.12.012 [6] 李林芝, 张德罡, 辛晓平, 等.呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性.生态学报, 2009, 29(10):5271-5279. doi: 10.3321/j.issn:1000-0933.2009.10.013 [7] 韩刚, 赵忠.不同土壤水分下4种沙生灌木的光合光响应特性.生态学报, 2010, 30(15):4019-4026. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201015008.htm [8] 刘建栋, 周秀骥, 于强.中国黄淮海地区冬小麦光合作用特征参数.应用气象学报, 2003, 14(3):257-265. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030333&flag=1 [9] 吴玮, 景元书, 马玉平, 等.干旱环境下夏玉米各生育时期光响应特征.应用气象学报, 2013, 24(6):723-730. doi: 10.11898/1001-7313.20130609 [10] 杨松, 刘俊林, 卢淑贤, 等.河套灌区向日葵适宜播种农业气象指标研究.中国农学通报, 2009, 25(11):176-179. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811016128.htm [11] 徐惠风, 徐克章, 刘兴土.向日葵光合特性及其对不同生态条件的响应.农村生态环境, 2004, 20(1):20-23. http://www.cnki.com.cn/Article/CJFDTOTAL-NCST200401006.htm [12] 崔良基, 梁国战, 王德兴.夏播条件下向日葵光合性能与杂交种产量的关系.中国油料作物学报, 2002, 24(1):48-50. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW200201014.htm [13] 崔良基, 王德兴, 宋殿秀, 等.不同向日葵品种群体光合生理参数及产量比较.中国油料作物学报, 2011, 33(2):147-151. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201102011.htm [14] 马玉平, 王石立, 王馥棠.作物模拟模型在农业气象业务应用中的研究初探.应用气象学报, 2005, 16(3):293-303. doi: 10.11898/1001-7313.20050303 [15] 孙琳丽, 马玉平, 景元书, 等.基于约束性分析的数据与作物模型同化方法.应用气象学报, 2013, 24(3):287-296. doi: 10.11898/1001-7313.20130304 [16] 陆佩玲, 罗毅, 刘建栋, 等.华北地区冬小麦光合作用的光响应曲线的特征参数.应用气象学报, 2000, 11(2):236-241. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000234&flag=1 [17] 王建林, 于贵瑞, 房全孝, 等.不同植物叶片水分利用效率对光和CO2的响应与模拟.生态学报, 2008, 28(2):525-533. [18] 李合生.现代植物生理学.北京:高等教育出版社, 2002. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [19] 许大全.光合作用效率.上海:上海科学技术出版社, 2002. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [20] 伍维模, 李志军, 罗青红, 等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特征的影响.林业科学, 2007, 43(5):30-35. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200705004.htm [21] Coley P D.Herbivory and defensive characteristics of tree species in a low land tropical forest.Ecological Monographs, 1983, 53(2):209-233. doi: 10.2307/1942495 [22] 刘世荣, 赵广东, 马全林.沙木廖和沙枣对地下水位变化的生理生态响应Ⅱ.叶片光合作用及其对温度和光的反应.植物生态学报, 2003, 27(2):223-227. doi: 10.17521/cjpe.2003.0034 [23] 邹琦.作物抗旱生理生态研究.济南:山东科学技术出版社, 1994. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [24] 蒋高明.植物生理生态学.北京:高等教育出版社, 2004. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm