Climatology Calculation of Solar Energy Resource in Sichuan Province
-
摘要: 利用SMARTS模式计算晴天总辐射,充分考虑大气对太阳辐射的削弱作用和海拔高度的影响,以四川省为例,建立了复杂自然环境条件下基于日照百分率的太阳能资源气候学计算方程。该方法不仅物理意义明确,而且计算结果误差明显降低;与实测值相比,7个辐射站年地面太阳总辐射曝辐量的相对误差均低于7%;与初始值采用天文辐射曝辐量的方法相比,无论是相对误差值还是离散程度,均降低一半以上。该方法较好地解决了在一个地形复杂、气候多变的区域采用同一计算方程的难题,从而有效避免了过去采用分区方法带来的边界不连续问题,对我国东西高差大、干湿变化明显的特殊情况具有应用价值。Abstract:
Using SMARTS to calculate clear-sky global radiation, fully thinking of the weaken effects of the altitude and the atmosphere, in terms of water vapor in atmosphere, meteorological visibility and O3 content, a climatology universal calculation equation on solar energy resource is established, which is based on the percentage of sunshine. This method is different from the calculation of solar energy resources using extraterrestrial radiation. Taken Sichuan Province as an example, results show that this method not only has unambiguous physical meaning, but also decreases the error of the calculating result obviously. 7-station annual value relative error is less than 7%, with the highest of 6.26% for Panzhihua and the lowest of-0.67% for Luzhou, the error is significantly lower than that in previous studies of Sichuan. Contrast with results from extraterrestrial radiation, not only the quantity but also discreteness of relative error decreases by more than a half. For the distribution of solar energy resources in Sichuan, it is large in the east part and low in the west part. From the change of each month, solar energy resources in the western plateau is relatively stable, the minimum monthly solar radiation for a maximum of 62% at Litang Station; solar energy resource in the east basin is fluctuant, the minimum monthly radiant exposure is only accounted for 22% of the maximum value at Zigong Station. The climatology universal calculation equation on solar energy resource can better resolve the problem of using the same calculation equation in the region which has complex topography and climate, avoiding the boundary discontinuity, effectively which is brought by using partition method in the past, and it is useful for special regional situations of huge relative altitude between the east part and the west part of China with obvious changes of dry and wet. This statistical equation is suitable for the calculation of solar energy resources, first of all, each input parameter on average is needed. If the equation is used to calculate the total radiation exposure radiation in a special month or a special year, it will result in great error.
-
表 1 1981—2010年平均7个辐射站年地面太阳总辐射曝辐量的计算值与实测值对比
Table 1 The contrast of calculated data and observed data of annual global irradiation at seven radiation stations from 1981 to 2010
辐射曝辐量 成都 泸州 绵阳 攀枝花 甘孜 峨眉山 红原 计算值/(MJ·m-2) 3335.27 3305.88 3442.83 6175.19 6344.00 4752.27 6108.18 实测值/(MJ·m-2) 3243.97 3328.06 3580.60 5811.18 6673.39 4682.51 6006.57 绝对误差/(MJ·m-2) 91.31 -22.18 -137.76 364.01 -329.39 69.77 101.61 相对误差% 2.81 -0.67 -3.85 6.26 -4.94 1.49 1.69 表 2 式 (2) 和式 (3) 的计算值与实测值的相对误差δ(单位:%)
Table 2 The relative deviation δ between calculated data from equation 2, equation 3 and observed data (unit:%)
统计项目 式 (2) 式 (3) δmax 10.26 18.91 δmin -11.56 -26.64 4.24 9.71 δSD 5.02 11.21 表 3 雅安站两种气溶胶类型下地面太阳总辐射曝辐量的计算结果比较
Table 3 The contrast of global irradiation calculated by difference environment of aerosol in Yaan Station
时间 乡村气溶胶/
(MJ·m-2)城市气溶胶/
(MJ·m-2)相对差值% 1月 438.8 389.6 11.2 2月 510.2 463.7 9.1 3月 717.6 665.4 7.3 4月 814.4 764.6 6.1 5月 911.7 860.1 5.7 6月 902.0 857.8 4.9 7月 910.0 870.2 4.4 8月 848.2 808.1 4.7 9月 719.8 681.9 5.3 10月 604.2 564.8 6.5 11月 457.3 418.9 8.4 12月 404.0 361.8 10.5 年 8238.1 7706.8 6.5 -
[1] 左大康, 王懿贤, 陈建绥.中国地区太阳总辐射的时空分布特征.气象学报, 1963, 33(1):78-96. doi: 10.11676/qxxb1963.007 [2] 翁笃鸣.试论总辐射的气候学计算方法.气象学报, 1964, 34(3):304-315. doi: 10.11676/qxxb1964.032 [3] 王炳忠, 张富国, 李立贤.我国的太阳能资源及其计算.太阳能学报, 1980, 1(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX198001001.htm [4] 祝昌汉.再论总辐射的气候学计算方法 (一).南京气象学院学报, 1982, 1:15-24. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198201002.htm [5] 张运林, 秦伯强, 陈伟民, 等.太湖无锡地区太阳总辐射的气候学计算及特征分析.应用气象学报, 2003, 14(3):339-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030341&flag=1 [6] 郑有飞, 关福来, 蔡子颖, 等.我国南方中东部地区地面太阳总辐射变化规律.应用气象学报, 2011, 22(3):312-320. doi: 10.11898/1001-7313.20110307 [7] 杨羡敏, 曾燕, 邱新法, 等.1960—2000年黄河流域太阳总辐射气候变化规律研究.应用气象学报, 2005, 16(2):243-248. doi: 10.11898/1001-7313.20050230 [8] 王炳忠, 申彦波.自然环境条件对太阳能资源计算影响的再思考.应用气象学报, 2012, 23(4):505-512. doi: 10.11898/1001-7313.20120415 [9] Gueymard C.SMARTS2, A Simple Model of the Atmospheric Radiative and Transfer of Sunshine:Algorithms and Performance Assessment.Publication Number:FSEC-PF-270-95.Florida Solar Energy Center, 1995. [10] 冯万瑞, 熊志强.四川太阳辐射能资源.成都:四川科学技术出版社, 1992. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [11] 王炳忠, 申彦波.我国上空的水汽含量及其气候学估算.应用气象学报, 2012, 23(6):763-768. doi: 10.11898/1001-7313.20120614 [12] 张顺谦, 冯万瑞.四川太阳辐射旬辐照量的气候计算.太阳能学报, 1992, 13(3):263-270. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX199203009.htm [13] 杨淑群, 詹兆渝, 范雄.四川省太阳能资源分布特征及开发利用建议.四川气象, 2007, 27(2):15-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX200702005.htm [14] 汤大清.四川省太阳总辐射的气候计算方法和时空分布特征.西南师范学院学报, 1983, 4:84-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK198304010.htm [15] 冯新灵, 杨利泉.四川盆地西北地区太阳总辐射的分布特征.四川气象, 1989, 9(3):34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX198903008.htm [16] Gueymard Christian A.SMARTS Code, Version 2.9.5, User's Manual.Solar Consulting Services, USA, 2006.