留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强风暴中反极性电荷结构研究进展

张义军 徐良韬 郑栋 王飞

张义军, 徐良韬, 郑栋, 等. 强风暴中反极性电荷结构研究进展. 应用气象学报, 2014, 25(5): 513-526..
引用本文: 张义军, 徐良韬, 郑栋, 等. 强风暴中反极性电荷结构研究进展. 应用气象学报, 2014, 25(5): 513-526.
Zhang Yijun, Xu Liangtao, Zheng Dong, et al. Review on inverted charge structure of severe storms. J Appl Meteor Sci, 2014, 25(5): 513-526.
Citation: Zhang Yijun, Xu Liangtao, Zheng Dong, et al. Review on inverted charge structure of severe storms. J Appl Meteor Sci, 2014, 25(5): 513-526.

强风暴中反极性电荷结构研究进展

资助项目: 

国家自然科学基金项目 41030960

中国气象科学研究院基本科研业务费 2013Z006

国家重点基础研究发展计划 2014CB441406

详细信息
    通信作者:

    张义军, email: zhangyj@cams.cma.gov.cn

Review on Inverted Charge Structure of Severe Storms

  • 摘要: 反极性电荷结构是强风暴系统中一种常见的电荷结构配置,它是强风暴中正地闪大量发生的重要原因之一,同时也往往与灾害性天气相联系。人们对云内电荷结构的认识随电场探空、多种地面观测手段的发展而深入。反极性电荷结构并非在强风暴的起始阶段就出现,而存在一个演变过程,出现在风暴发展的特定阶段。宽广强烈的上升气流被认为在反极性电荷结构的形成中起关键作用,它使得上升气流区液态水含量等微物理条件发生改变,进而影响大小粒子碰撞的起电过程,使风暴内主要起电区霰粒子荷正电,冰晶等粒子荷负电,从而形成反极性电荷结构。强风暴中气流的动力输送、风切变等也被认为是反极性电荷结构形成的可能原因。利用数值模式,在真实的气象背景场下再现强风暴的反极性电荷结构演变特征和闪电活动特征,也是研究反极性结构形成的有效途径之一。针对正地闪大量发生的强风暴开展大规模外场观测试验,并将观测结果与数值模拟相结合,将有利于理解强风暴中反极性电荷结构的形成及其与闪电活动特征的关系。
  • 图  1  正常 (a) 与反转 (b) 的三极性电荷结构垂直电场探空示意图[19]

    Fig. 1  Stylized profile of Ez in the normal (a) and inverted (b) tripole charge structure (from Reference [19])

    图  2  三维电场的探空结果 (填色为雷达回波强度,黑色线为探空气球的移动路径,黑线上暗红色线段的长短和方向代表了探测点上场强的大小和方向)[25]

    Fig. 2  The electric field vectors (dark red line) along the path of sounding balloon (black line) (the shaded represents the radar reflectivity)(from Reference [25])

    图  3  LMA探测的闪电辐射源[25]

    (a) 正极性云闪,(b) 负极性云闪

    Fig. 3  Classification of the lightning radiation sources mapped by the LMA in terms of the parent storm charge for the positive-polarity (a) and negative-polarity cloud flashes (b)(from Reference [25])

    图  4  1988年5月31日反极性结构垂直场强气球探空[8]

    Fig. 4  The Ez profile of inverted charge structure on 31 May 1988 (from Reference [8])

    图  5  利用LMA的推断的一次雹暴过程的电荷结构演变[51]

    Fig. 5  Summary of the vertical charge structure of the developing storm inferred from OK-LMA data during each analyzed period of its lifetime (from Reference [51])

    图  6  正常 (a) 与反转 (b) 的三极性电荷结构中正、负偶极性概念

    Fig. 6  The concept of positive dipole and negative dipole in the normal (a) and inverted (b) tripole structures

  • [1] Wilson C T R.Investigations on lightning discharges and on the electric field of thunderstorms.Phil Trans Roy Soc Lond, 1920, A (221):73-115. http://rsta.royalsocietypublishing.org/content/221/582-593/73
    [2] Simpson S G, Scrase F J.The distribution of electricity in thunderclouds.Proc Roy Soc Lond, 1937(161):309-352. http://rspa.royalsocietypublishing.org/content/209/1097/158
    [3] Simpson S G, RobinsonG D.The distribution of electricity in thunderclouds, Ⅱ.Proc Roy Soc Lond, 1941(177):281-328. http://rspa.royalsocietypublishing.org/content/209/1097/158
    [4] Vonnegut B, Moore C B, Semonin R G, et al.Effect of atmospheric space charge on initial electrification of cumulus clouds.J Geophys Res, 1962, 67(10):3909-3922. doi:  10.1029/JZ067i010p03909
    [5] Marshall T C, Rust W D, Winn W P, et al.Electrical structure in two thunderstorm anvil clouds.J Geophys Res, 1989, 94(D2):2171-2181. doi:  10.1029/JD094iD02p02171
    [6] Krehbiel P R.The Electrical Structure of Thunderstorms.Washington D C:National Acad Press, 1986.
    [7] Marshall T C, Rust W D.Electric field soundings through thunderstorms.J Geophys Res, 1991, 96(D12):22297-22306. doi:  10.1029/91JD02486
    [8] Marshall T C, Rust W D, Stolzenburg M.Electrical structure and updraft speeds in thunderstorms over the southern Great Plains.J Geophys Res, 1995, 100(D1):1001-1015. doi:  10.1029/94JD02607
    [9] Stolzenburg M, Rust W D, Smull B F, et al.Electrical structure in thunderstorm convective regions 1.Mesoscale convective systems.J Geophys Res, 1998, 103(D12):14059-14078. doi:  10.1029/97JD03546
    [10] Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions 2.Isolated storms.J Geophys Res, 1998, 103(D12):14079-14096. doi:  10.1029/97JD03547
    [11] Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions 3.Synthesis.J Geophys Res, 1998, 103(D12):14097-14108. doi:  10.1029/97JD03545
    [12] 张义军, 刘欣生, 肖庆复.中国南北方雷暴及人工触发闪电电特性对比分析.高原气象, 1997, 16(2):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX702.000.htm
    [13] Williams E R.The electrification of severe storms.Meteorological Monographs, 2001, 28(50):527-528. doi:  10.1175/0065-9401-28.50.527
    [14] Rust W D, Marshall T C.On abandoning the thunderstorm tripole-charge paradigm.J Geophys Res, 1996, 101(D18):23499-23504. doi:  10.1029/96JD01802
    [15] Williams E R.The tripole structure of thunderstorms.J Geophys Res, 1989, 94(D11):13151-13167. doi:  10.1029/JD094iD11p13151
    [16] Rakov V A, Uman M A.Lightning Physics and Effects.Cambridge:Cambridge University Press, 2003.
    [17] Takahashi T.Precipitation particle charge distribution and evolution of East Asian rainbands.Atmos Res, 2012, 118:304-323. doi:  10.1016/j.atmosres.2012.07.016
    [18] Krehbiel P R, Brook M, McCrory R A.An analysis of the charge structure of lightning discharges to ground.J Geophys Res:Oceans, 1979, 84(C5):2432-2456. doi:  10.1029/JC084iC05p02432
    [19] Rust W D, MacGorman D R.Possibly inverted-polarity electrical structures in thunderstorms during STEPS.Geophys Res Lett, 2002, 29(12):1571. doi:  10.1029/2001GL014303
    [20] Qie X, Yu Y, Liu X, et al.Charge analysis on lightning discharges to the ground in Chinese inland plateau (close to Tibet).Ann Geophys, 2000, 18(10):1340-1348. doi:  10.1007/s00585-000-1340-z
    [21] 张廷龙, 郄秀书, 袁铁, 等.中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演.大气科学, 2008, 32(5):1221-1227. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805018.htm
    [22] 崔海华, 郄秀书, 张其林, 等.甘肃中川地区云闪的多站同步观测及雷暴的等效电荷结构.高原气象, 2009, 28(4):808-815. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904012.htm
    [23] 武智君, 郄秀书, 王东方, 等.大兴安岭林区负地闪电荷源的反演.气象学报, 2013, 71(4):783-796. doi:  10.11676/qxxb2013.057
    [24] Schuur T J, Rust W D, Smull B F, et al.Electrical and kinematic structure of the stratiform precipitation region trailing an Oklahoma squall Line.J Atmos Sci, 1991, 48(6):825-842. doi:  10.1175/1520-0469(1991)048<0825:EAKSOT>2.0.CO;2
    [25] Rust W D, MacGorman D R, Bruning E C, et al.Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS).Atmos Res, 2005, 76(1-4):247-271. doi:  10.1016/j.atmosres.2004.11.029
    [26] MacGorman D R, Rust W D.The Electrical Nature of Storms.Oxford:Oxford University Press, 1998.
    [27] Kasemir H W.A Contribution to the electrostatic theory of a lightning discharge.J Geophys Res, 1960, 65(7):1873-1878. doi:  10.1029/JZ065i007p01873
    [28] Thomas R J, Krehbiel P R, Rison W, et al.Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma.Geophys Res Lett, 2000, 27(12):1703-1706. doi:  10.1029/1999GL010845
    [29] Rison W, Thomas R J, Krehbiel P R, et al.A GPS-based three-dimensional lightning mapping system:Initial observations in central New Mexico.Geophys Res Lett, 1999, 26(23):3573-3576. doi:  10.1029/1999GL010856
    [30] Krehbiel P R, Thomas R J, Rison W, et al.GPS-based mapping system reveals lightning inside storms.Eos Transactions American Geophysical Union, 2000, 81(3):21-25. doi:  10.1029/00EO00014
    [31] 张广庶, 王彦辉, 郄秀书, 等.基于时差法三维定位系统对闪电放电过程的观测研究.中国科学, 2010, 40(4):523-534. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201004014.htm
    [32] Sun Z, Qie X, Liu M, et al.Lightning VHF radiation location system based on short-baseline TDOA technique-Validation in rocket-triggered lightning.Atmos Res, 2013, 129-130:58-66. doi:  10.1016/j.atmosres.2012.11.010
    [33] 李亚珺, 张广庶, 文军, 等.沿海地区一次多单体雷暴电荷结构时空演变.地球物理学报, 2012, 55(10):3203-3212. doi:  10.6038/j.issn.0001-5733.2012.10.003
    [34] Li Y, Zhang G, Wen J, et al.Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping.Atmos Res, 2013, 134:137-149. doi:  10.1016/j.atmosres.2013.07.020
    [35] Shao X M, Krehbiel P R.The spatial and temporal development of intracloud lightning.J Geophys Res, 1996, 101(D21):26641-26668. doi:  10.1029/96JD01803
    [36] 董万胜, 刘欣生, 陈慈萱, 等.用宽带干涉仪观测云内闪电通道双向传输的特征.地球物理学报, 2003, 46(3):317-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200303005.htm
    [37] Zheng D, Zhang Y, Meng Q, et al.Total lightning characteristics and electric structure evolution in a hailstorm.J Meteor Res, 2009, 23(2):233-249. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXW200902010.htm
    [38] Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1-2):241-256. doi:  10.1016/j.atmosres.2010.04.011
    [39] 刘冬霞, 郄秀书, 王志超, 等.飑线系统中的闪电辐射源分布特征及云内电荷结构讨论.物理学报, 2013, 62(21):219201, doi: 10.7498/aps.62.219201.
    [40] Liu D, Qie X, Peng L, et al.Charge structure of a summer thunderstorm in North China:Simulation using a Regional Atmospheric Model System.Adv Atmos Sci, 2014, 31(5):1022-1034. doi:  10.1007/s00376-014-3078-7
    [41] MacGorman D R, Burgess D W.Positive cloud-to-ground lightning in tornadic storms and hailstorms.Mon Wea Rev, 1994, 122(8):1671-1697. doi:  10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2
    [42] Vonnegut B, Moore C B.Giant Electrical Storms//Smith L G.Recent Advances in Atmospheric Electricity.New York:Pergamon Press, 1958:399-411.
    [43] Lang T J, Miller L J, Weisman M, et al.The Severe Thunderstorm Electrification and Precipitation Study.Bull Amer Meteor Soc, 2004, 85(8):1107-1125. doi:  10.1175/BAMS-85-8-1107
    [44] Zhang Y, Krehbiel P R, Liu X.Polarity inverted intracloud discharges and electric charge structure of thunderstorm.Chin Sci Bull, 2002, 47(20):1725-1729. doi:  10.1007/BF03183317
    [45] MacGorman D R, Rust W D, Krehbiel P, et al.The electrical structure of two supercell storms during STEPS.Mon Wea Rev, 2005, 133(9):2583-2607. doi:  10.1175/MWR2994.1
    [46] Tessendorf S A, Rutledge S A, Wiens K C.Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS.Mon Wea Rev, 2007, 135(11):3682-3706. doi:  10.1175/2007MWR1954.1
    [47] Weiss S A, Rust W D, MacGorman D R, et al.Evolving complex electrical structures of the STEPS 25 June 2000 Multicell Storm.Mon Wea Rev, 2008, 136(2):741-756. doi:  10.1175/2007MWR2023.1
    [48] Zhang Y, Meng Q, Krehbiel P R, et al.Spatial and temporal characteristics of VHF radiation source produced by lightning in supercell thunderstorms.Chin Sci Bull, 2004, 49(6):624-631. doi:  10.1360/03wd0551
    [49] Zhang Y, Meng Q, Lu W, et al.Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms.Chin Sci Bull, 2006, 51(2):198-212. doi:  10.1007/s11434-005-0233-7
    [50] Wiens K C, Rutledge S A, Tessendorf S A.The 29 June 2000 supercell observed during STEPS.Part Ⅱ:Lightning and charge structure.J Atmos Sci, 2005, 62(12):4151-4177. doi:  10.1175/JAS3615.1
    [51] Emersic C, Heinselman P L, MacGorman D R, et al.Lightning activity in a hail-producing storm observed with phased-array radar.Mon Wea Rev, 2011, 139(6):1809-1825. doi:  10.1175/2010MWR3574.1
    [52] Uman M A.The Lightning Discharge.London:Academic Press, 1987.
    [53] Rust W D, MacGorman D R, Arnold R T.Positive cloud-to-ground lightning flashes in severe storms.Geophys Res Lett, 1981, 8(7):791-794. doi:  10.1029/GL008i007p00791
    [54] Rust W D, Taylor W L, MacGorman D R, et al.Research on electrical properties of severe thunderstorms in the great plains.Bull Amer Meteor Soc, 1981, 62(9):1286-1293. doi:  10.1175/1520-0477(1981)062<1286:ROEPOS>2.0.CO;2
    [55] Liu D, Feng G, Wu S.The characteristics of cloud-to-ground lightning activity in hailstorms over northern China.Atmos Res, 2009, 91(2-4):459-465. doi:  10.1016/j.atmosres.2008.06.016
    [56] Reap R M, MacGorman D R.Cloud-to-ground lightning:Climatological characteristics and relationships to model fields, radar observations, and severe local storms.Mon Wea Rev, 1989, 117(3):518-535. doi:  10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2
    [57] Nag A, Rakov V A.Positive lightning:An overview, new observations, and inferences.J Geophys Res, 2012, 117(D08109). http://adsabs.harvard.edu/abs/2012JGRD..117.8109N
    [58] Brook M, Nakano M, Krehbiel P, et al.The electrical structure of the Hokuriku winter thunderstorms.J Geophys Res:Oceans, 1982, 87(C2):1207-1215. doi:  10.1029/JC087iC02p01207
    [59] Kitagawa N, Michimoto K.Meteorological and electrical aspects of winter thunderclouds.J Geophys Res, 1994, 99(D5):10713-10721. doi:  10.1029/94JD00288
    [60] Qie X, Zhang T, Chen C, et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau.Geophys Res Lett, 2005, 32(5):L05814. doi:  10.1029/2004GL022162/full
    [61] Cui H, Qie X, Zhang Q, et al.Intracloud discharge and the correlated basic charge structure of a thunderstorm in Zhongchuan, a Chinese Inland Plateau region.Atmos Res, 2009, 91(2-4):425-429. doi:  10.1016/j.atmosres.2008.06.007
    [62] Gilmore M S, Wicker L J.Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995.Mon Wea Rev, 2002, 130(10):2349-2372. doi:  10.1175/1520-0493(2002)130<2349:IOTLEO>2.0.CO;2
    [63] Carey L D, Rutledge S A, Petersen W A.The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998.Mon Wea Rev, 2003, 131(7):1211-1228. doi:  10.1175/1520-0493(2003)131<1211:TRBSSR>2.0.CO;2
    [64] Zhang Y, Meng Q, Lu W, et al.Positive charge region in lower part of thunderstorm and preliminary breakdown process of negative cloud-to-ground Lightning.J Meteor Res, 2009, 23(1):95-104. http://mall.cnki.net/magazine/article/QXXW200901010.htm
    [65] Mansell E R, MacGorman D R, Ziegler C L, et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm.J Geophys Res, 2005, 110(D12):D12101. doi:  10.1029/2004JD005287
    [66] MacGorman D R, Rust W D, Ziegler C L, et al.TELEX-The Thunderstorm Electrification and Lightning Experiment.Bull Amer Meteor Soc, 2008, 89(7):997-1013. doi:  10.1175/2007BAMS2352.1
    [67] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms.J Atmos Sci, 1978, 35(8):1536-1548. doi:  10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
    [68] Jayaratne E R, Saunders C P R, Hallett J.Laboratory studies of the charging of soft-hail during ice crystal interactions.Quart J Roy Meteor Soc, 1983, 109(461):609-630. doi:  10.1002/(ISSN)1477-870X
    [69] Pereyra R G, Avila E E, Castellano N E, et al.A laboratory study of graupel charging.J Geophys Res, 2000, 105(D16):20803. doi:  10.1029/2000JD900244
    [70] Saunders C P R, Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions.J Geophys Res, 1998, 103(D12):13949-13956. doi:  10.1029/97JD02644
    [71] Williams E, Mushtak V, Rosenfeld D, et al.Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate.Atmos Res, 2005, 76(1-4):288-306. doi:  10.1016/j.atmosres.2004.11.009
    [72] Carey L D, Buffalo K M.Environmental control of cloud-to-ground lightning polarity in severe storms.Mon Wea Rev, 2007, 135(4):1327-1353. doi:  10.1175/MWR3361.1
    [73] MacGorman D R, Rust D, Van der Velde O, et al.Lightning Relative to Precipitation and Tornadoes in a Supercell Storm.12th Int Conf on Atmos Elec, 2003. https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_46956.htm
    [74] MacGorman D R, Apostolakopoulos I R, Lund N R, et al.The timing of cloud-to-ground lightning relative to total lightning activity.Mon Wea Rev, 2011, 139(12):3871-3886. doi:  10.1175/MWR-D-11-00047.1
    [75] Baker M B, Blyth A M, Christian H J, et al.Relationships between lightning activity and various thundercloud parameters:Satellite and modelling studies.Atmos Res, 1999, 51(3-4):221-236. doi:  10.1016/S0169-8095(99)00009-5
    [76] Levin Z, Yair Y, Ziv B.Positive cloud-to-ground flashes and wind shear in Tel-Aviv thunderstorms.Geophys Res Lett, 1996, 23(17):2231-2234. doi:  10.1029/96GL00709
    [77] Lang T J, Rutledge S A.Relationships between convective storm kinematics, precipitation, and lightning.Mon Wea Rev, 2002, 130(10):2492-2506. doi:  10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2
    [78] Bruning E C, Rust W D, MacGorman R D, et al.Formation of charge structures in a supercell.Mon Wea Rev, 2010, 138(10):3740-3761. doi:  10.1175/2010MWR3160.1
    [79] MacGorman D R, Kuhlman K, Burning E, et al.Lightning and Electrical Structure of Severe Storms.14th International Conference on Atmospheric Electricity, 2011. doi:  10.1029/97JD03545/abstract
    [80] Saunders C P R, Keith W D, Mitzeva R P.The effect of liquid water on thunderstorm charging.J Geophys Res, 1991, 96(D6):11007-11017. doi:  10.1029/91JD00970
    [81] Gardiner B, Lamb D, Pitter R L, et al.Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm.J Geophys Res, 1985, 90(D4):6079-6086. doi:  10.1029/JD090iD04p06079
    [82] Ziegler C L, MacGorman D R, Dye J E, et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm.J Geophys Res, 1991, 96(D7):12833-12855. doi:  10.1029/91JD01246
    [83] Helsdon J H, Wojcik W A, Farley R D.An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model.J Geophys Res, 2001, 106(D1):1165-1192. doi:  10.1029/2000JD900532
    [84] Kuhlman K M, Ziegler C L, Mansell E R, et al.Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm.Mon Wea Rev, 2006, 134(10):2734-2757. doi:  10.1175/MWR3217.1
    [85] Zhang Y, Yan M, Liu X.Simulation study of discharge processes in thunderstorm.Chin Sci Bull, 1999, 44(22):2098-2102. doi:  10.1007/BF02884930
    [86] Bruning E C, Weiss S A, Calhoun K M.Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology.Atmos Res, 2014, 135-136:274-284. doi:  10.1016/j.atmosres.2012.10.009
    [87] Takahashi T, Suzuki K.Development of negative dipoles in a stratiform cloud layer in a Okinawa "Baiu" MCS system.Atmos Res, 2010, 98(2-4):317-326. doi:  10.1016/j.atmosres.2010.07.013
    [88] 王飞, 董万胜, 张义军, 等.云内大粒子对闪电活动影响的个例模拟.应用气象学报, 2009, 20(5):564-570. doi:  10.11898/1001-7313.20090507
    [89] 徐良韬, 张义军, 王飞, 等.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验.大气科学, 2012, 36(5):1041-1052. doi:  10.3878/j.issn.1006-9895.2012.11235
    [90] Black R A, Hallett J.Electrification of the hurricane.J Atmos Sci, 1999, 56(12):2004-2028. doi:  10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2
    [91] Xu L, Zhang Y, Wang F, et al.Simulation of the electrification of a tropical cyclone using the WRF-ARW model:An idealized case.J Meteor Res, 2014, 28(3):453-468. doi:  10.1007/s13351-014-3079-6
    [92] 曹治强, 王新.与强对流相联系的云系特征和天气背景.应用气象学报, 2013, 24(3):365-372. doi:  10.11898/1001-7313.20130313
    [93] 张腾飞, 尹丽云, 张杰, 等.西南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi:  10.11898/1001-7313.20130209
    [94] Wu T, Dong W, Zhang Y, et al.Discharge height of lightning narrow bipolar events.J Geophys Res, 2012, 117(D5):D05119.
    [95] Fierro A O, Shao X M, Hamlin T, et al.Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina.Mon Wea Rev, 2011, 139(5):1492-1504. doi:  10.1175/2010MWR3532.1
    [96] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [97] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
  • 加载中
图(6)
计量
  • 摘要浏览量:  5362
  • HTML全文浏览量:  2704
  • PDF下载量:  1356
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-15
  • 修回日期:  2014-07-30
  • 刊出日期:  2014-09-30

目录

    /

    返回文章
    返回