Dual Optical Path Visibility System Measuring Method and Experiment
-
摘要: 双光路能见度测量系统是一种基于CCD (Charge-Coupled Device) 数字摄像和光在大气中衰减理论的能见度测量系统,首先设置远、近两个固定距离的特性相同的目标光源和背景装置,然后通过CCD拍摄所设置的目标光源和背景,拍摄的图像由1394数据线和图像采集卡传输到计算机,通过数字图像处理获取目标光源和背景的灰度信息,最终利用相应的算法计算能见度。试验表明:双光路能见度测量系统和透射式能见度仪对比偏差随能见度的升高而升高,而与前向散射式能见度仪对比偏差随能见度的升高有小幅降低,通过白天和夜晚数据对比可知,白天太阳光的影响已基本消除。Abstract: Dual optical path visibility system is a visibility measuring system based on a charge coupled device (CCD) digital camera and a light attenuation theory in atmosphere. Photovoltaic conversion process is realized by using the CCD to measure the light attenuation in the atmosphere. Two target reflection and background devices at different fixed distances are installed in the dual optical path visibility system and have identical characteristics except for distances. During measurement, a light source and the CCD are arranged at the same place, light signal sent by the light source is transmitted to the target reflector and reflected back, two beams of light reflected back are received by the CCD, the CCD converted reflected beams of light to corresponding facula images, and the whole photovoltaic conversion process is completed. Compared with the traditional digital camera method in which the same distance between a CCD and a target device is set, the light path distance of the dual optical path visibility system is doubled because of light reflection. The facula images captured by the CCD are transmitted to a computer and the attenuation information and background grey information of target facula images are acquired by digital image processing. The center of gravity method is used to dynamically extract the attenuation information of the target facula images, random noise is eliminated by averaging a plurality of extracted facula images, and the attenuation information is used for visibility back calculating. A back calculation formula is derived based on the classical optical attenuation theory, the formula is improved by combining an actual experimental platform, and finally, visibility is calculated. Through contrast experiments and correlation coefficients, the basic trend of visibility data of the dual optical path visibility system is consistent with that of the traditional transmission visibility meter and the traditional forward scatter visibility meter, especially when the visibility is low, and with the visibility increasing, the trend consistency declines to some extent. According to the mean deviation and mean relative deviation, visibility data of the dual optical path visibility system are more close to the traditional transmission visibility meter because of a similar working principle, as the dual optical path visibility system and the traditional transmission visibility measure attenuation of a whole light path while the forward scatter visibility meter only measures atmospheric scattering. With the visibility increasing, the visibility data deviation of the dual optical path visibility system and the traditional transmission visibility meter become larger mainly because of more fluctuation. In addition, optical axis alignment of the traditional transmission visibility meter is required and the camera lens of the traditional transmission visibility meter is sensitive to contaminant. Through visibility data comparison of day and night, it is observed that sunlight influences on the visibility data are basically eliminated.
-
图 3 不同方法测量能见度结果对比
(a) 2013年6月8日低能见度对比, (b) 2013年6月13日白天中能见度对比, (c) 2013年6月13日夜晚高能见度对比
Fig. 3 Visibility comparison by different measuring methods
(a) low visibility comparison diagram on 8 June 2013, (b) medium daytime visibility comparison diagram on 13 June 2013, (c) high visibility comparison diagram on 13 June 2013
表 1 双光路能见度测量系统与其他方法对比
Table 1 Comparison between dual optical path visibility system and the other methods
参数 低能见度 中能见度 高能见度 白天 夜晚 与前向散射式能见度仪均方根偏差/m 299 620 750 780 790 与前向散射式能见度仪均方根相对偏差/% 16.0 15.0 14.8 15.2 15.4 与前向散射式能见度仪平均偏差/m -185 -400 -525 -380 -402 与前向散射式能见度仪平均相对偏差/% -14.0 -11.0 -9.8 -14.0 -15.0 与前向散射式能见度仪相关系数 0.93 0.79 0.75 0.88 0.85 与透射式能见度仪均方根偏差/m 180 625 730 670 640 与透射式能见度仪均方根相对偏差/% 10.8 13.0 17.0 15.5 14.8 与透射式能见度仪平均偏差/m 26 237 260 250 220 与透射式能见度仪平均相对偏差/% 1.3 8.0 9.2 11.0 10.0 与透射式能见度仪相关系数 0.91 0.81 0.72 0.87 0.89 表 2 能见度消光系数与光强的关系
Table 2 Relationship between visibility extinction coefficient and light intensity
光学视程/km 消光系数 光强 0.05 78.24046011 0.020008114 0.1 39.12023005 0.141450040 0.2 19.56011503 0.376098445 0.5 7.824046011 0.676270768 1 3.912023005 0.822356837 2 1.956011503 0.906838926 3 1.304007668 0.936886043 4 0.978005751 0.952280907 5 0.782404601 0.961638985 6 0.652003834 0.967928739 7 0.558860429 0.972446591 8 0.489002876 0.975848814 9 0.434669223 0.978503214 10 0.391202301 0.980631932 -
[1] 罗慧, 李良序, 胡省, 等.公路交通事故与气象条件关系及其气象预警模型.应用气象学报, 2007, 18(3):350-357. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070357&flag=1 [2] 曾书儿, 王改利.能见度的观测及其仪器.应用气象学报, 1999, 10(2):207-212. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990259&flag=1 [3] 李春亮, 曲来世, 张勇.能见度测量技术100问.北京:气象出版社, 2009. [4] 刘西川, 高太长, 刘磊, 等.降水现象对大气消光系数和能见度的影响.应用气象学报, 2010, 21(4):433-441. doi: 10.11898/1001-7313.20100406 [5] 孙学金, 王晓蕾, 李浩, 等.大气探测学.北京:气象出版社, 2009. [6] 傅刚, 李晓岚, 魏娜.大气能见度研究.中国海洋大学学报, 2009, 39(5):855-862. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200905014.htm [7] Steffens C.Measurement of visibility by photographic photometry.Industrial Engineering Chemistry, 1949, 41(11):2396-2399. doi: 10.1021/ie50479a015 [8] Taek M K.Video Camera-based Visibility Measurement System.USA:US 10/346, 796, 2006. [9] 谢兴生, 陶善昌, 周秀骥.数字摄像法测量气象能见度.科学通报, 1999, 44(1):97-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199901021.htm [10] 王京丽, 程丛兰, 徐晓峰.数字摄像法测量能见度仪系统对比实验.气象科技, 2002, 30(6):353-357. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200206007.htm [11] Liaw J J, Lian S B, Huang Y F, et al.Atmospheric Visibility Monitoring Using Digital Image Analysis Techniques.13th International Conference on Computer Analysis of Images and Patterns (CAIP 2009), 2009:1204-1211. [12] 苏子牧.普通数码相机在大气能见度测量中应用方法研究.气象科技, 2011, 39(1):52-60. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201101014.htm [13] 吕伟涛, 陶善昌, 刘亦风, 等.基于数字摄像技术测量气象能见度——双亮度差方法和试验研究.大气科学, 2004, 28(4):559-570. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200404007.htm [14] 吕伟涛, 陶善昌, 谭涌波, 等.双亮度差方法测量白天气象能见度时的误差分析.应用气象学报, 2005, 16(5):619-628. doi: 10.11898/1001-7313.20050508 [15] Rafael C G, Richard E W, Steven L E.Digital Image Processing Using MATLAB.Beijing:Publishing House of Electronics Industry, 2005. [16] 源计算机工作室. 高级应用——图形图像处理. 北京: 机械工业出版社, 2001. [17] 马舒庆, 徐振飞, 毛节泰, 等.以黑体为目标的能见度参考标准试验研究.应用气象学报, 2014, 25(2):129-134. doi: 10.11898/1001-7313.20140201 [18] 世界气象组织. 气象仪器和观测方法指南 (第五版). 北京: 气象出版社, 1991. [19] 吕伟涛, 陶善昌, 谭涌波, 等.数字摄像能见度观测系统中实用黑体技术的应.应用气象学报, 2003, 14(6):691-699. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030687&flag=1 [20] 李学全, 王泽明.优质简易黑体模型.应用光学, 1996, 17(5):31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-YYGX605.009.htm [21] 李学全, 李治强, 李治蓉.镜腔黑体模型.应用光学, 1997, 18(5):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-YYGX199705006.htm [22] 李浩, 孙学金.前向散射能见度仪测量误差的理论分析.红外与激光工程, 2009, 38(6):1094-1098. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200906033.htm