Determination of Area Precipitation Thresholds of Rainstorm-flood Hazard in the Nandu River Basin
-
摘要: 基于海南省南渡江流域龙塘水文站1976—1987年和2009—2010年的逐日气象水文资料,采用HBV-D水文模型,通过对模型参数率定和验证,确定了适合南渡江流域的HBV-D水文模型最优化参数。结果表明:该模型在1976—1981年率定期、1982—1987年验证期和2009—2010年验证期的Nash-Sutcliffe效率系数分别为0.891,0.831,0.953,相关系数分别为0.944,0.912,0.977,达到了0.01显著性水平。通过建立的南渡江流域HBV-D水文模型进行模型反演,确定了不同前期水位 (7 m,8 m,9 m,10 m,11 m) 的面雨量和水位关系,根据龙塘水文站的警戒水位、10年重现期水位、30年重现期水位、50年重现期水位作为不同等级预警的临界判别条件,最终确定了不同前期水位的致灾临界面雨量指标。Abstract: Using hydrological model to determine area precipitation thresholds of rainstorm-flood hazard is a tendency of hydrological and meteorological forecast. The Nandu River Basin, locating on the north edge of Hainan Island, is the largest basin of tropical regions in China. And the frequent flood of the Nandu River Basin attracts wide public concern. The HBV (Hydrologiska Byråns Vattenbalansavdelning) model is a semi-distributed conceptual hydrological model with multiple versions, used in more than 40 countries and regions around the world. Using HBV-D model which is suitable for large-scale basin, the basin hydrologic characteristics of the Nandu River Basin are simulated and the area precipitation threshold values are determined. These effects may also provide scientific evidence for early warning in the Nandu River Basin.The model is run in terms of observed daily precipitation, air temperature during 1976-1987 and 2009-2010, and the simulated runoff is verified with corresponding hydrological observations of Longtang Hydrologic Station. Taking 1976-1981 as calibration period, several model sensitivity parameters are selected and calibrated by programming. Periods of 1982-1987 and 2009-2010 are selected for model validating, and the Nash-Sutcliffe efficiency index and correlation coefficient are evaluated. Verifications show that the Nash-Sutcliffe efficiency indexes are 0.891, 0.831 and 0.953, and correlation coefficients are 0.944, 0.912 and 0.977, both passing the test of 0.01 level in 3 periods. It indicates that the model can accurately simulate the Nandu River Basin hydrological characteristics. And it's able to determine area precipitation threshold values of rainstorm-flood hazard in the Nandu River Basin.The curve of stream flow and water level is simulated with historical hydrographic data of 1976-1987 when the water level is greater than or equal to 7 m. Curves of area precipitation and different previous water-levels (7 m, 8 m, 9 m, 10 m and 11 m) are determined by hydrological model HBV-D of the Nandu River Basin. Curves can calculate how many meters the water level will rise when storm comes, in the condition of five previous water-levels. Finally, according to water levels of warning, 10-year return period, 30-year return period and 50-year return period as critical criterions for different warning grades, the area precipitation thresholds in different previous water-levels are determined.The accuracy of area precipitation threshold values are verified using observations of four floods. The result indicates that these values are suitable for forewarning, but the missing of warning is still inevitable. To improve timeliness and accuracy, hourly rolling forecast and early warning can be carried out.
-
表 1 HBV-D水文模型参数优化值
Table 1 Optimal values of HBV-D for the investigated area
参数 取值 意义 PKORR 0.75 降水对雨量的校正系数 CEVPL 0.8 水体蒸散量校准系数 ERED 1 拦截时实际蒸散量系数 FCDEL 0.7 实际蒸散 (发) 和潜在蒸散 (发) 比值 BETA 0.18 土壤参数 INFMAX 17 mm/d 最大渗透能力 KUZ1 0.04 d-1 上层消退系数1 KUZ2 0.44 d-1 上层消退系数2 UZL 58.08 mm 阈值参数 PERC 3.37 mm/d 渗透系数 KLZ 0.015 d-1 下层消退系数 表 2 南渡江流域HBV-D水文模型日径流模拟效率
Table 2 Performance assessment of HBV-D for daily flow in the Nandu River Basin
时段 Nash-Sutcliffe效率系数 相关系数 率定期 (1976—1981年) 0.891 0.944* 验证期 (1982—1987年) 0.831 0.912* 验证期 (2009—2010年) 0.953 0.977* 注:*代表达到0.01显著性水平。 表 3 南渡江流域致灾临界面雨量表
Table 3 Area precipitation thresholds of the Nandu River Basin
前期水位/m 24 h临界面雨量/mm 四级 三级 二级 一级 7 268 395 440 508 8 168 293 339 408 9 148 274 319 389 10 130 252 296 364 11 99 225 271 339 表 4 南渡江流域4次洪水过程
Table 4 Four flood hydrographs of the Nandu River Basin
洪水过程 日期 水位/m 24 h面雨量/mm 第1次 1976-09-27 10.77 205.9 1976-09-28 13.17 37.6 1976-09-29 12.44 1.7 1976-09-30 10.29 1.0 第2次 1980-07-23 10.38 129.0 1980-07-24 11.82 15.3 1980-07-25 10.43 10.3 第3次 2010-10-04 9.73 118.5 2010-10-05 12.15 163.7 2010-10-06 14.08 92.0 2010-10-07 14.02 57.7 2010-10-08 12.69 40.4 2010-10-09 11.70 32.4 2010-10-10 10.8 1.7 第4次 2010-10-16 10.79 146.8 2010-10-17 13.39 171.5 2010-10-18 14.50 27.3 2010-10-19 13.41 0.0 2010-10-20 11.19 0.0 -
[1] 秦大河.影响我国的主要气象灾害及其发展态势.自然灾害学报, 2007, 16(12):46-48. http://www.cnki.com.cn/Article/CJFDTOTAL-YJJY200806002.htm [2] 张顺利, 陶诗言, 张庆云, 等.1998年夏季中国暴雨洪涝灾害的气象水文特征.应用气象学报, 2001, 12(4):442-457. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010459&flag=1 [3] 符传君. 基于小波理论的南渡江下游水资源变化规律研究//中国水利学会. 中国水利学会2008学术年会论文集 (上册), 2008: 451-455. [4] 吴慧, 吴胜安.近48年海南省极端降水时空变化趋势.安徽农业科学, 2010(19):10101-10103. doi: 10.3969/j.issn.0517-6611.2010.19.064 [5] 陈桂亚, 袁雅鸣.山洪灾害临界雨量分析计算方法研究.水资源研究, 2004(4):36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200512017.htm [6] 黄勇, 何永健, 朱红芳.皖境淮河流域降雨量-水位关系分析.安徽师范大学学报:自然科学版, 2010(1):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-AHSZ201001013.htm [7] 李坤玉, 赵琳娜, 赵鲁强, 等. 淮河流域面雨量和流量关系分析//中国水利学会. 中国水利学会2010学术年会论文集 (上册), 2010: 330-337. [8] 郭良, 唐学哲, 孔凡哲.基于分布式水文模型的山洪灾害预警预报系统研究及应用.中国水利, 2007(14):38-41. doi: 10.3969/j.issn.1000-1123.2007.14.016 [9] 张亚萍, 程明虎, 徐慧, 等.雷达定量测量降水在佛子岭流域径流模拟中的应用.应用气象学报, 2007, 18(3):295-305. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070351&flag=1 [10] 高歌, 陈德亮, 徐影.未来气候变化对淮河流域径流的可能影响.应用气象学报, 2008, 19(6):741-748. doi: 10.11898/1001-7313.20080614 [11] 包红军, 梁莉, 韩焱红. 中小流域暴雨致洪临界面雨量阈值确定技术研究//中国气象学会. 创新驱动发展提高气象灾害防御能力——S3第三届气象服务发展论坛——公众、专业气象预报服务技术与应用, 2013: 70-77. [12] 彭涛, 位承志, 叶金桃, 等.汉江丹江口流域水文气象预报系统.应用气象学报, 2014, 25(1):112-119. doi: 10.11898/1001-7313.20140112 [13] 刘志雨, 杨大文, 胡健伟. 基于动态临界雨量的中小河流山洪预警方法及其应用//中国水利学会. 中国水利学会2010学术年会论文集 (上册), 2010: 482-488. [14] 王莉莉, 陈德辉, 赵琳娜.GRAPES气象-水文模式在一次洪水预报中的应用.应用气象学报, 2012, 23(3):274-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120303&flag=1 [15] 梁莉, 赵琳娜, 齐丹, 等.基于贝叶斯原理降水订正的水文概率预报试验.应用气象学报, 2013, 24(4):416-424. doi: 10.11898/1001-7313.20130404 [16] Lindström G, Johansson B, Persson M, et al.Development and test of the distributed HBY-96 hydrological model.J Hydrology, 1997, 201:272-288. doi: 10.1016/S0022-1694(97)00041-3 [17] 徐宗学.水文模型.北京:科学出版社, 2009:281-283. [18] Krysanova V, Bronstert A, Müller-Wohlfeil D I.Modelling river discharge for large drainage basins:From lumped to distributed approach.Hydrological Sciences Journal, 1999, 44(2):313-331. doi: 10.1080/02626669909492224 [19] 刘绿柳, 姜彤, 徐金阁, 等.21世纪珠江流域水文过程对气候变化的响应.气候变化研究进展, 2012, 8(1):28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201201008.htm [20] Nash J, Sutcliffe J.River flow forecasting through conceptual models part I:A discussion of principles.J Hydrology, 1970, 10:282-290. doi: 10.1016/0022-1694(70)90255-6