留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的TSI3563积分浊度误差校正方法

马楠 周秀骥 颜鹏 赵春生

马楠, 周秀骥, 颜鹏, 等. 一种改进的TSI3563积分浊度误差校正方法. 应用气象学报, 2015, 26(1): 12-21. DOI: 10.11898/1001-7313.20150102..
引用本文: 马楠, 周秀骥, 颜鹏, 等. 一种改进的TSI3563积分浊度误差校正方法. 应用气象学报, 2015, 26(1): 12-21. DOI: 10.11898/1001-7313.20150102.
Ma Nan, Zhou Xiuji, Yan Peng, et al. A modified method to correct the measurement error of TSI3563 integrating nephelometer. J Appl Meteor Sci, 2015, 26(1): 12-21. DOI:  10.11898/1001-7313.20150102.
Citation: Ma Nan, Zhou Xiuji, Yan Peng, et al. A modified method to correct the measurement error of TSI3563 integrating nephelometer. J Appl Meteor Sci, 2015, 26(1): 12-21. DOI:  10.11898/1001-7313.20150102.

一种改进的TSI3563积分浊度误差校正方法

DOI: 10.11898/1001-7313.20150102
资助项目: 

公益性行业 (气象) 科研专项 GYHY200906038

公益性行业 (气象) 科研专项 GYHY201006047

国家重点基础研究发展计划 2011CB403402

中国气象科学研究院基本科研业务专项课题 2008Z011

详细信息
    通信作者:

    赵春生, email: zcs@pku.edu.cn

A Modified Method to Correct the Measurement Error of TSI3563 Integrating Nephelometer

  • 摘要: TSI3563型积分式浊度计是一种性能出色的气溶胶散射系数观测仪器,然而由于仪器设计所固有的限制,TSI3563型浊度计观测结果包含有角度截断和非朗伯体光源两项系统性误差,会使观测结果较真值偏小10%左右。因此,需要对TSI3563型浊度计的观测结果进行校正才能得到较为精确的散射系数观测值。该研究利用2009年华北平原HaChi气溶胶外场观测数据测试了现有校正方法,结果显示,传统的校正方法在我国华北平原这样的高气溶胶污染地区并不适用。为此,提出一种改进的校正方法,利用同时观测的PM1和PM10数据,在校正方案中加入超微米粒子体积比这一参量,对于不同体积比采用不同的校正函数。利用实际观测数据检验后发现,改进方法的校正效果相对于传统方法有很大改善。
  • 图  1  基于HaChi观测数据计算得到的3个波长下TSI3563型浊度计校正因子和Ångströmm指数

    Fig. 1  Relationship between the correction factor and Ångström exponent calculated based on HaChi measurements

    图  2  基于随机生成的气溶胶谱分布计算得到的550 nm下浊度计校正因子和Ångström指数的关系

    Fig. 2  Relationship between the correction factor and Ångström exponent at 550 nm wavelength calculated from randomly generated aerosol number size distributions

    图  3  基于观测的气溶胶谱分布计算的不同方法校正结果与参考值差异的频率分布

    Fig. 3  Frequency distributions of the bias between correction factor calculated with different methods and reference values

    图  4  基于观测的气溶胶谱分布计算的不同方法校正结果与参考值差异的累积概率分布

    Fig. 4  Cumulative distribution function of the bias between correction factor culculated with different methods and reference values

    表  1  Anderson和Ogren提出的校正公式中所用参数[5]

    Table  1  Parameters used in the correction function of Anderson and Ogren's method (from Reference [5])

    参数 450 nm 550 nm 700 nm
    PM10切割 PM1切割 PM10切割 PM1切割 PM10切割 PM1切割
    a 1.365 1.165 1.337 1.152 1.297 1.120
    b -0.156 -0.046 -0.138 -0.044 -0.113 -0.035
    Cave 1.290 1.094 1.290 1.073 1.260 1.049
    下载: 导出CSV

    表  2  不同参数设置下550 nm校正因子C550的夏季平均值及与参考情形的相对偏差

    Table  2  Relative differences between C550 calculated under different parameter assumptions and the reference value

    情形 mr, non mi, non mr, BC mi, BC 混合状态 C550 相对偏差/%
    参考情形 1.53 10-7 1.75 0.55 部分内混合、部分外混合 1.1174 0
    情形1 1.50 10-7 1.75 0.55 部分内混合、部分外混合 1.1208 0.30
    情形2 1.55 10-7 1.75 0.55 部分内混合、部分外混合 1.1150 -0.21
    情形3 1.53 10-7 1.50 0.55 部分内混合、部分外混合 1.1190 0.14
    情形4 1.53 10-7 2.00 0.55 部分内混合、部分外混合 1.1157 -0.15
    情形5 1.53 10-7 1.75 0.44 部分内混合、部分外混合 1.1169 -0.04
    情形6 1.53 10-7 1.75 0.66 部分内混合、部分外混合 1.1177 0.03
    情形7 1.53 10-7 1.75 0.55 均匀内混合 1.1178 0.04
    情形8 1.53 10-7 1.75 0.55 外混合 1.1171 -0.03
    下载: 导出CSV

    表  3  改进的校正方法中校正函数对于不同fvsm范围的参数选择

    Table  3  Parameters for different fvsm range used in the improved method

    fvsm 450 nm 550 nm 700 nm
    a b c a b c a b c
    [0, 0.1) 0.0073 -0.0630 1.1738 0.0069 -0.0577 1.1617 0.0078 -0.0536 1.1450
    [0.1, 0.2) 0.0095 -0.0648 1.1794 0.0105 -0.0609 1.1670 0.0162 -0.0665 1.1559
    [0.2, 0.3) 0.0136 -0.0727 1.1930 0.0174 -0.0741 1.1836 0.0302 -0.0959 1.1833
    [0.3, 0.4) 0.0206 -0.0878 1.2127 0.0265 -0.0898 1.2020 0.0419 -0.1088 1.1959
    [0.4, 0.5) 0.0275 -0.0990 1.2334 0.0310 -0.0865 1.2120 0.0442 -0.0868 1.1904
    [0.5, 0.6) 0.0310 -0.0994 1.2554 0.0329 -0.0751 1.2273 0.0445 -0.0604 1.1967
    [0.6, 0.7) 0.0443 -0.1155 1.2951 0.0443 -0.0765 1.2602 0.0531 -0.0442 1.2220
    下载: 导出CSV
  • [1] Charlson R J, Schwartz S E, Hales J M, et al.Climate forcing by anthropogenic aerosols.Science, 1992, 255(5043):423-430. doi:  10.1126/science.255.5043.423
    [2] Mishchenko M I, Cairns B, Hansen J E, et al.Monitoring of aerosol forcing of climate from space:Analysis of measurement requirements.Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 88(1):149-161. https://www.researchgate.net/publication/222547291_Monitoring_of_Aerosol_forcing_of_climate_from_space_analysis_of_measurement_requirements
    [3] Heintzenberg J, Charlson R J.Design and applications of the integrating nephelometer:A review.J Atmos Ocean Technol, 1996, 13(5):987-1000. doi:  10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2
    [4] Anderson T L, Covert D S, Marshall S F, et al.Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer.J Atmos Ocean Technol, 1996, 13(5):967-986. doi:  10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2
    [5] Anderson T L, Ogren J A.Determining aerosol radiative properties using the TSI 3563 integrating nephelometer.Aerosol Science and Technology, 1998, 29(1):57-69. doi:  10.1080/02786829808965551
    [6] Birmili W, Stratmann F, Wiedensohler A.Design of a DMAbased size spectrometer for a large particle size range and stable operation.J Aerosol Sci, 1999, 30(4):549-553. doi:  10.1016/S0021-8502(98)00047-0
    [7] Mie G.Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen.Annalen der Physik, 1908, 330(3):377-445. doi:  10.1002/(ISSN)1521-3889
    [8] Wex H, Neusüβ C, Wendisch M, et al.Particle scattering, backscattering, and absorption coefficients:An in situ closure and sensitivity study.Journal of Geophysical Research:Atmospheres (1984-2012), 2002, 107(D21):LAC 4-1-LAC 4-18. doi:  10.1029/2000JD000234
    [9] Ma N, Zhao C S, Müller T, et al.A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions.Atmospheric Chemistry and Physics, 2012, 12(5):2381-2397. doi:  10.5194/acp-12-2381-2012
    [10] Ma N, Zhao C S, Nowak A, et al.Aerosol optical properties in the North China Plain during HaChi Campaign:An in-situ optical closure study.Atmospheric Chemistry and Physics, 2011, 11(12):5959-5973. doi:  10.5194/acp-11-5959-2011
    [11] Schuster G L, Dubovik O, Holben B N.Angstrom exponent and bimodal aerosol size distributions.Journal of Geophysical Research:Atmospheres (1984-2012), 2006, 111(D7), doi: 10.1029/2005JD006328.
    [12] Eck T F, Holben B N, Reid J S, et al.Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols.Journal of Geophysical Research:Atmospheres (1984-2012), 1999, 104(D24):31333-31349. doi:  10.1029/1999JD900923
    [13] Westphal D L, Toon O B.Simulations of microphysical, radiative, and dynamical processes in a continental-scale forest fire smoke plume.Journal of Geophysical Research:Atmospheres (1984-2012), 1991, 96(D12):22379-22400. doi:  10.1029/91JD01956
    [14] Khalizov A F, Xue H, Wang L, et al.Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.The Journal of Physical Chemistry A, 2009, 113(6):1066-1074. doi:  10.1021/jp807531n
    [15] Katrinak K A, Rez P, Perkes P R, et al.Fractal geometry of carbonaceous aggregates from an urban aerosol.Environmental Science & Technology, 1993, 27(3):539-547. https://www.researchgate.net/publication/231276246_Fractal_geometry_of_carbonaceous_aggregates_from_an_urban_aerosol
    [16] Okada K, Heintzenberg J, Kai K, et al.Shape of atmospheric mineral particles collected in three Chinese arid-regions.Geophys Res Lett, 2001, 28(16):3123-3126. doi:  10.1029/2000GL012798
  • 加载中
图(4) / 表(3)
计量
  • 摘要浏览量:  2980
  • HTML全文浏览量:  1243
  • PDF下载量:  1451
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-02
  • 修回日期:  2014-09-16
  • 刊出日期:  2015-01-31

目录

    /

    返回文章
    返回