留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于P-T模型估算雨养大豆田蒸散量

吴文心 贾志军 董一平

吴文心, 贾志军, 董一平. 基于P-T模型估算雨养大豆田蒸散量. 应用气象学报, 2015, 26(2): 221-230. DOI: 10.11898/1001-7313.20150210..
引用本文: 吴文心, 贾志军, 董一平. 基于P-T模型估算雨养大豆田蒸散量. 应用气象学报, 2015, 26(2): 221-230. DOI: 10.11898/1001-7313.20150210.
Wu Wenxin, Jia Zhijun, Dong Yiping. Simulating evapotranspiration of rain-fed soybean field based on P-T model. J Appl Meteor Sci, 2015, 26(2): 221-230. DOI:  10.11898/1001-7313.20150210.
Citation: Wu Wenxin, Jia Zhijun, Dong Yiping. Simulating evapotranspiration of rain-fed soybean field based on P-T model. J Appl Meteor Sci, 2015, 26(2): 221-230. DOI:  10.11898/1001-7313.20150210.

基于P-T模型估算雨养大豆田蒸散量

DOI: 10.11898/1001-7313.20150210
资助项目: 

高原大气与环境四川省重点实验室开放基金项目 PAEKL-2010-K3

四川省教育厅应用基础研究项目 2009JY0117

详细信息
    通信作者:

    贾志军, email: jzj@cuit.edu.cn

Simulating Evapotranspiration of Rain-fed Soybean Field Based on P-T Model

  • 摘要: 基于2005—2007年涡度相关系统实测值和小气候观测资料,利用Priestley-Taylor (简称P-T) 模型对三江平原雨养大豆田5—10月的蒸散量进行模拟和分析。结果表明:P-T模型参数α采用常规值1.26时,大豆出苗前和生长期模拟值明显大于实测值,大豆收割后模拟值明显小于实测值,模型不能用于模拟大豆田蒸散量。大豆生长期内参数α与叶面积指数呈对数正相关关系;当饱和水汽压差较小时,参数α与其呈幂函数正相关关系,当饱和水汽压差较大时,参数α与其呈幂函数负相关关系。大豆出苗前参数α与太阳辐射呈正相关关系,与饱和水汽压差呈负相关关系;大豆收割后参数α与风速呈显著正相关关系。依据回归方程修正参数α后,多个用于检验模型模拟效果的统计量均表明:P-T模型对不同时期大豆田蒸散量的模拟精度明显提高,能够较好地估算大豆田蒸散量。总而言之,P-T模型必须修正参数α方可用于估算三江平原雨养大豆田蒸散量。
  • 图  1  基于P-T模型参数α常规值的大豆田不同阶段蒸散量模拟值与实测值比较

    (a) 出苗前,(b) 生长期,(c) 收割后

    Fig. 1  Comparison of observed evapotranspirations and those simulated by P-T model based on conventional values of α during different period

    (a) before emergence, (b) growing season, (c) after harvest

    图  2  不同时期大豆田P-T模型参数α变化特征

    (a) 出苗前,(b) 生长期,(c) 收割后

    Fig. 2  Variation characteristics parameter α of P-T model over soybean field during different period

    (a) before emergence, (b) growing season, (c) after harvest

    图  3  大豆生长期内叶面积指数 (a) 和饱和水汽压差 (b) 对P-T模型参数α的影响

    Fig. 3  Effects of LAI (a) and D(b) on parameter α of P-T model during growing season of soybean

    图  4  不同饱和水汽压差 (D) 对P-T模型参数α的影响

    (a)D<5.05 hPa,(b)D>5.05 hPa

    Fig. 4  Effects of D on parameter α of P-T model under different conditions

    (a)D < 5.05 hPa, (b)D > 5.05 hPa

    图  5  基于P-T模型参数α修正值的大豆田不同阶段蒸散量模拟值与实测值比较

    (a) 出苗前,(b) 生长期,(c) 收割后

    Fig. 5  Comparison of observed evapotranspirations and those simulated by P-T model based on modified α value during different periods

    (a) before emergence, (b) growing season, (c) after harvest

    表  1  大豆发育期状况

    Table  1  Developmental stages of soybean

    发育阶段 开始日期
    2005年 2006年 2007年
    播种前 05-08 05-01 05-04
    播种期 05-25 05-17 05-20
    出苗期 06-07 05-26 06-10
    开花期 07-03 07-05 07-12
    结荚期 07-28 08-10 07-30
    鼓粒期 08-17 08-25 08-10
    成熟期 09-12 09-15 09-25
    收割期 09-28 10-04 10-05
    收割后 10-23 10-23 10-23
      注:播种前日期为涡度相关系统观测开始日期,收割后日期为涡度相关系统观测结束日期。
    下载: 导出CSV

    表  2  大豆生长期P-T模型参数α的非线性统计模型

    Table  2  Non-linear statistical models of parameter α of P-T during soybean growing season

    条件 参数a(±标准差) 参数b(±标准差) 参数c(±标准差) R2 样本量
    D < 5.05 hPa 0.083(±0.087) 0.195 (±0.105) 1.294 (±0.376) 0.786 80
    D > 5.05 hPa 0.108 (±0.128) 5.246 (±6.102) -0.953 (±0.596) 0.679 150
    下载: 导出CSV

    表  3  大豆出苗前和收割后P-T模型参数α的统计模型

    Table  3  Statistical models of parameter α of P-T model before soybean emergence and after soybean harvest

    发育阶段 常数项及回归因子 回归系数 (±标准差) 标准回归系数 R2
    出苗前 C0 0.965*(±0.137) 0.391
    Ra 0.028*(±0.008) 0.450
    D -0.100*(±0.016) -0.786
    收割后 C0 0.278 (±0.494) 0.392
    Ws 0.550*(±0.134) 0.626
      注:*表示达到0.001显著性水平。
    下载: 导出CSV
  • [1] Lee T S, Najim M M, Aminul M H.Estimating evapotranspiration of irrigated rice at the west coast of the Peninsular of Malaysia.Journal of Applied Irrigation Science, 2004, 39(1):103-117. http://www.academia.edu/2685015/Estimating_evapotranspiration_of_irrigated_rice_at_the_West_Coast_of_the_Peninsular_of_Malaysia
    [2] 张顺谦, 马振峰, 张玉芳.四川省潜在蒸散量估算模型.应用气象学报, 2009, 20(6):729-736. doi:  10.11898/1001-7313.20090611
    [3] Zhang Y Q, Liu C M, Yu Q, et al.Energy fluxes and the Priestley-Taylor parameter over winter wheat and maize in the North China Plain.Hydrological Processes, 2004, 18(12):2235-2246. doi:  10.1002/(ISSN)1099-1085
    [4] 龚员石, 李子忠, 李春友.利用时域反射仪测定的土壤水分估算农田蒸散量.应用气象学报, 1998, 9(1):72-78. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980110&flag=1
    [5] Burba G G, Verma S B.Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems.Agricultural and Forest Meteorology, 2005, 135(1-4):190-201. doi:  10.1016/j.agrformet.2005.11.017
    [6] 毛飞, 张光智, 徐祥德.参考作物蒸散量的多种计算方法及其结果的比较.应用气象学报, 2000, 11(增刊Ⅰ):128-136. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1016.htm
    [7] Nurit A, William P K, Martha C.Application of the Priestley-Taylor approach in a two-source surface energy balance model.Journal of Hydrometeorology, 2010, 11(1):185-198. doi:  10.1175/2009JHM1124.1
    [8] 刘绍民.用Priestley-Taylor模式计算棉田实际蒸散量的研究.应用气象学报, 1998, 9(1):88-93. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980112&flag=1
    [9] 吕厚荃, 钱拴, 杨霏云, 等.华北地区玉米田实际蒸散量的计算.应用气象学报, 2003, 14(6):722-728. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030691&flag=1
    [10] 米娜, 陈鹏狮, 张玉书, 等.几种蒸散模型在玉米农田蒸散量计算中的应用比较.资源科学, 2009, 31(9):1599-1606. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200909023.htm
    [11] Sumner D M, Jacobs J M.Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration and pan evaporation methods to estimate pasture evapotranspiration.J Hydrol, 2005, 308(1-4):81-104. doi:  10.1016/j.jhydrol.2004.10.023
    [12] Pereira A R.The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration.Agricultural and Forest Meteorology, 2004, 125(3-4):305-313. doi:  10.1016/j.agrformet.2004.04.002
    [13] Stannard D I.Comparison of Penman-Monteith, Shuttleworth-Wallace and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland.Water Resources Research, 1993, 29(5):1379-1392. doi:  10.1029/93WR00333
    [14] Priestley C H B, Taylor R J.On the assessment of surface heat flux and evaporation using large-scale parameters.Mon Wea Rev, 1972, 100:81-92. doi:  10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
    [15] Debrin H A R, Keijman J Q.The Priestley-Taylor evaporation model applied to a large shallow lake in the Netherlands.J Applied Meteor, 1979, 18(7):898-903. doi:  10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
    [16] Mukammal E I, Neumann H H.Application of the Priestley-Taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimeter and class A Pan.Boundary-layer Meteorology, 1977, 12:243-256. doi:  10.1007/BF00121976
    [17] Flint A L, Childs S W.Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clear-cut.Agricultural and Forest Meteorology, 1991, 56(3-4):247-260. doi:  10.1016/0168-1923(91)90094-7
    [18] 马耀明.非均匀陆面上区域蒸发 (散) 研究概况.高原气象, 1997, 16(4):446-452. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX704.013.htm
    [19] Xu C Y, Singh V P.Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climate regions.J Hydrol, 2005, 308(1/4):105-121. http://www.sciencedirect.com/science/article/pii/S0022169404005256
    [20] Shi T T, Guan D X, Wang A Z, et al.Comparison of three models to estimate evapotranspiration for a temperate mixed forest.Hydrological Processes, 2008, 22:3431-3443. doi:  10.1002/hyp.v22:17
    [21] Wilson K B, Goldstein A H, Falge E, et a1.Energy balance closure at FLUXNET sites.Agricultural and Forest Meteorology, 2002, 113(1-4):223-243. doi:  10.1016/S0168-1923(02)00109-0
    [22] 李正泉, 于贵瑞, 温学发, 等.中国能量观测网络 (ChinaFLUX) 能量平衡闭合状况的评价.中国科学D辑:地球科学, 2004, 34(增刊Ⅱ):46-56. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S2004.htm
    [23] 刘渡, 李俊, 于强, 等.涡度相关观测的能量闭合状况及其对农田蒸散测定的影响.生态学报, 2012, 32(17):5309-5317. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201217004.htm
    [24] 田红, 伍琼, 童应祥.安徽省寿县农田能量平衡评价.应用气象学报, 2011, 22(3):356-361. doi:  10.11898/1001-7313.20110312
    [25] 赵晓松. 三江平原沼泽湿地垦殖对CO2、水汽及能量通量的影响研究. 北京: 中国科学院研究生院, 2008.
    [26] Lafleur P M, Roulet N T, Admiral S W.Annual cycle of CO2 exchange at a bog peatland.Journal of Geophysical Research:Atmospheres, 2001, 106(D3):3071-3081. doi:  10.1029/2000JD900588
    [27] Falge E, Baldocchi D D, Olson R J.Gap filling strategies for defensible annual sums of net ecosystem exchange.Agricultural and Forest Meteorology, 2001, 107(1):43-69. doi:  10.1016/S0168-1923(00)00225-2
    [28] Falge E, Baldocchi D D, Olson R J.Gap filling strategies for long term energy flux data sets.Agricultural and Forest Meteorology, 2001, 107(1):71-77. doi:  10.1016/S0168-1923(00)00235-5
    [29] 曾丽红, 宋开山, 张柏, 等.应用Landsat数据和SEBAL模型反演区域蒸散发及其参数估算.遥感技术与应用, 2008, 23(3):255-263. doi:  10.11873/j.issn.1004-0323.2008.3.255
    [30] Perez P J, Castellvi F, MartÍnez-Cob A.A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux.Agricultural and Forest Meteorology, 2008, 148:25-37. doi:  10.1016/j.agrformet.2007.08.015
    [31] Kang S Z, Gu B J, Du T S, et al.Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region.Agricultural Water Management, 2003, 59:239-254. doi:  10.1016/S0378-3774(02)00150-6
    [32] 潘竟虎.黄土丘陵沟壑区蒸散的遥感反演:以静宁县水土保持世行贷款项目区为例.生态与农村环境学报, 2008, 24(4):6-9;41. http://www.cnki.com.cn/Article/CJFDTOTAL-NCST200804002.htm
    [33] Bormann H.Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations.Climatic Change, 2011, 104(3-4):729-753. doi:  10.1007/s10584-010-9869-7
  • 加载中
图(5) / 表(3)
计量
  • 摘要浏览量:  2172
  • HTML全文浏览量:  1186
  • PDF下载量:  1124
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-13
  • 修回日期:  2015-01-09
  • 刊出日期:  2015-03-31

目录

    /

    返回文章
    返回