A Risk Forecast Method for Southwest Road Damages Based on Precipitation
-
摘要: 降水引发公路沿线滑坡、泥石流及其他灾害频繁发生,已成为引发公路损毁的最重要因子之一。该文利用2007年1月—2013年7月区域 (云、贵、川、渝4个地区) 公路损毁灾害数据、基础地理信息数据及国家气象中心降水量历史资料,通过对灾害发生频次、降水量等资料的统计分析,初步探讨降水与公路损毁灾害的关系,并重点针对公路损毁的降水影响因子 (即前期有效降水和损毁灾害发生当日降水),开发具有普适性的公路损毁概率密度函数及其概率拟合方程,建立公路损毁灾害概率预报模型;综合公路损毁灾害风险区划信息 (即灾害危险性等级) 与降水的等级临界阈值 (即降水危险性等级),建立区域公路损毁的危险性分级预警方案,得出综合的西南地区公路损毁风险预报模型,以1~5级划分, 分别为灾害发生可能性极小、灾害发生可能性较小、灾害发生可能性中等 (注意)、灾害发生可能性较大 (预警)、灾害发生可能性极大 (警报)。该预报方法结合降水危险性等级及公路损毁灾害危险性等级,明显优于仅考虑阈值降水量的判别方法。Abstract: Landslides, debris-flows and other disasters along roads caused by precipitation occur frequently, becoming one of the most important factors of roads damages. Yunnan, Guizhou, Sichuan and Chongqing are especially prone to road damages. Based on the information of road damages, the corresponding precipitation data from January 2007 to July 2013 and 24 h precipitation forecast data from July 2012 to July 2013, probability forecast models are adopted to describe probabilistic relations between precipitation and road damages. First, precipitation factors of the day and over the past two, three, four, five, six, seven days and effective precipitation over the past 15 days are analyzed by the method of Kendall correlation, and precipitation of the day and the past effective precipitation are identified because of small correlation. Second, after the normality process to two factors, polynomial fitting, Fourier fitting and Gaussian fitting are applied to the frequency distribution of the disaster and two kinds of precipitation factor. According to the analysis of fitting correlation and the fitting error, Gaussian fitting method is selected to apply to the scattering distribution of precipitation and road damages. Finally, universal probability forecast models of road damages based on effective precipitation (Model Ⅰ) and comprehensive of the day and effective precipitation (Model Ⅱ) are established, and the fitting adjustable coefficients are 0.9108 and 0.8333, respectively. According to critical precipitation thresholds of two models, combining the grade of hazards risk and precipitation risk to road damages, two kinds of warning classification scheme based on precipitation are proposed. Two risk forecast models for road damages are developed. Risks of road damages are divided into five levels by probability of damage occurrence: Very small, small, medium, large and very large. Two risk forecast methods are tested, showing they are both applicable to describe the relation between precipitation and road damages, and have a high forecasting accuracy and strong reference value in disaster forecast. In comparison, two models have the same trend and results of Model Ⅱ are generally greater than Model Ⅰ in number. In the flood season and disaster-prone period, Model Ⅱ is more sensitive to subjective forecasts than Model Ⅰ.The risk forecasting systems of road damages are created for Southwest China based on two methods, and used in risk operation since the end of 2012 achieving good effects.
-
Key words:
- road damages;
- risk forecast;
- probabilistic forecast
-
表 1 3种拟合曲线评价
Table 1 Evaluation of three kinds of fitting
拟合类型 误差平方和 确定系数 调节确定系数 均方根误差 高斯拟合 0.05506 0.9144 0.9108 0.03423 傅里叶拟合 0.06493 0.8991 0.8925 0.03757 多项式拟合 0.18060 0.7193 0.7073 0.06199 表 2 3种模型评价
Table 2 Evaluation of three models
降水因子 误差平方和 确定系数 调节确定系数 均方根误差 有效降水因子 0.1339 0.8398 0.8333 0.05338 综合降水因子 0.1876 0.7175 0.7055 0.06318 当日降水因子 0.2292 0.6282 0.6124 0.06983 表 3 预警区等级初步划分表
Table 3 Warning classification
公路损毁灾害危险性等级 降水量危险性等级 极低危险性 低危险性 中危险性 高危险性 极高危险性 极高危险区 3级预警区 4级预警区 5级预警区 5级预警区 5级预警区 高危险区 2级预警区 3级预警区 4级预警区 5级预警区 5级预警区 中危险区 1级预警区 2级预警区 3级预警区 4级预警区 5级预警区 低危险区 1级预警区 1级预警区 2级预警区 3级预警区 4级预警区 不危险区 1级预警区 1级预警区 1级预警区 2级预警区 3级预警区 表 4 预警等级含义、对应的灾害发生可能性及其防御措施
Table 4 Meaning of warning classification, the possibility of disaster and defensive measures
预警等级 灾害发生情况 (24 h内) 防御措施 1级预警区 灾害发生可能性极小 不采取措施 2级预警区 灾害发生可能性较小 启动重要灾害隐患点的群测群防工作 3级预警区 灾害发生可能性中等 (注意) 注意对灾害点的监测、采取防御措施,提醒危险区内的人员注意灾害动态 4级预警区 灾害发生可能性较大 (预警) 应加强对灾害点的监测,对灾害危险区应开展预防应急措施 5级预警区 灾害发生可能性极大 (警报) 应全天候对灾害点进行监测,建立防御措施和救灾体系,组织紧急疏散通道等 表 5 2012—2013年公路损毁灾害模型Ⅰ和模型Ⅱ的预报次数
Table 5 Predictions of two models from 2012 to 2013
预报模型 1级预警 2级预警 3级预警 4级预警 5级预警 模型Ⅰ 1 18 47 27 14 模型Ⅱ 0 13 53 27 14 表 6 公路损毁发生概率预报 (单位:%)
Table 6 Probabilistic forecasts of road damages (unit:%)
预报日期 巴中 南江 冕宁 泸定 富顺 雷波 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 2012-08-30 32 50 14 30 62 65 23 36 38 44 17 34 2012-08-31 81 89 81 89 66 67 23 36 93 83 39 55 2012-09-01 74 71 64 66 74 71 36 52 95 86 45 62 -
[1] 殷坤龙, 陈丽霞, 张桂荣, 等.区域滑坡灾害预测预警与风险评价.地学前缘, 2007, 14(6):85-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200706012.htm [2] 文科军, 王礼先, 谢宝元, 等.暴雨泥石流实时预报的研究.北京林业大学学报, 1998, 20(6):59-64. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY806.010.htm [3] 高速, 周平根, 董颖, 等.泥石流预测、预报技术方法的研究现状浅析.工程地质学报, 2002, 10(3):279-283. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200203010.htm [4] 邱骋, 王纯祥, 江崎哲郎, 等.基于边坡单元的公路眼线滑坡危险度概率分析.岩土力学, 2005, 26(11):1731-1736. doi: 10.3969/j.issn.1000-7598.2005.11.007 [5] 谭炳炎, 段爱英.山区铁路沿线暴雨泥石流预报的研究.自然灾害学报, 1995, 4(2):43-52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199502008.htm [6] 谭万沛, 韩庆玉.四川省泥石流预报的区域临界雨量指标研究.灾害学, 1992, 7(2):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199202007.htm [7] 姚令侃.用泥石流发生频率及暴雨频率推求临界雨量的探讨.水土保持学报, 1988, 2(4):72-77. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS198804011.htm [8] 魏永明, 谢又予.降雨型泥石流 (水石流) 预报模型研究.自然灾害学报, 1997, 6(4):48-54. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH704.007.htm [9] 姚学祥, 徐晶, 薛建军, 等.基于降水量的全国地质灾害潜势预报模式.中国地质灾害与防治学报, 2005, 16(4):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200504022.htm [10] 刘罗曼.用主成分回归分析解决回归模型中复共线性问题.沈阳师范大学学报:自然科学版, 2008, 26(1):42-44. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSX200801012.htm [11] 黄嘉佑, 黄茂怡.主分量逐步筛选因子典型相关分析及其预报试验.应用气象学报, 2000, 11(1):72-78. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1008.htm [12] 陶云, 段旭.云南降水正态分布特征的初探.气象科学, 2003, 23(2):161-167. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200302004.htm [13] 胡文东, 陈晓光, 李艳春, 等.宁夏月、季、年降水量正态性分析.中国沙漠, 2006, 26(6):963-968. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711005145.htm [14] 方建刚, 毛明策, 程肖侠.陕西降水的正态分布特征分析.西北大学学报:自然科学版, 2009, 39(1):131-136. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200901040.htm [15] 王纪军, 任国玉, 匡晓燕, 等.河南省月和年降水量正态性分析.气候与环境研究, 2010, 15(4):522-528. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201004022.htm [16] 陈学君, 苏仲岳, 李仲龙, 等.年降水量数据的正态变换方法对比分析.干旱气象, 2012, 30(3):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201203025.htm [17] 张国平.有效雨量和滑坡泥石流灾害概率模型.气象, 2014, 40(7):886-890. doi: 10.7519/j.issn.1000-0526.2014.07.013 [18] 徐晶, 张国平, 张芳华, 等.基于Logistic回归的区域地质灾害综合气象预警模型.气象, 2007, 33(12):3-8. doi: 10.7519/j.issn.1000-0526.2007.12.001 [19] 刘春, 张春辉, 郭萨萨.基于能量模型的水稻生长模型.应用气象学报, 2013, 24(2):240-247. doi: 10.11898/1001-7313.20130212 [20] 殷坤龙, 张桂荣, 龚日祥, 等. 浙江省突发性地质灾害预警预报. 武汉: 中国地质大学出版社, 2005. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [21] 刘传正.中国地质灾害气象预警方法与应用.岩土工程界, 2004, 7(7):17-18. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201504028.htm [22] 梁莉, 赵琳娜, 齐丹, 等.基于贝叶斯原理降水订正的水文概率预报试验.应用气象学报, 2013, 24(4):416-424. doi: 10.11898/1001-7313.20130404 [23] 王晨稀.短期集合降水概率预报试验.应用气象学报, 2005, 16(1):78-87. doi: 10.11898/1001-7313.20050110 [24] 林明智, 毕宝贵, 乔林.中央气象台短期降雨预报水平初步分析.应用气象学报, 1995, 6(4):392-399. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950461&flag=1 [25] 邓雪娇, 胡胜, 闫敬华.主客观天气预报质量对比分析.应用气象学报, 2003, 14(6):730-738. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030692&flag=1 [26] 郑卫江, 吴焕萍, 罗兵, 等.GIS技术在台风预报服务产品制作系统中的应用.应用气象学报, 2010, 21(2):250-255. doi: 10.11898/1001-7313.20100216