Estimation of Climate Change Effects on Water Use Efficiency of Rain-fed Winter Wheat
-
摘要: 研究气候变化对雨养冬小麦水分利用效率的影响规律,可为农业适应气候变化提供科学依据。通过构建代表站雨养冬小麦产量和土壤水分变化量的模拟方程,分析水分利用效率的历史变化,并结合两种区域气候模式PRECIS和REGCM4.0输出的4种不同气候变化情景资料,估算未来2021—2050年雨养冬小麦水分利用效率的可能变化。结果表明:1981—2010年甘肃、山西和河南代表站的雨养冬小麦水分利用效率呈二次曲线变化趋势,最大值出现在2003年前后。4种气候变化情景的模拟结果均显示:2021—2050年冬小麦全生育期耗水量明显增加,各代表站不同情景平均增加6.2%;产量有增有减,平均产量变化率为1.4%;水分利用效率平均减小3.8%,且变率减小。区域气候模式PRECIS估算的水分利用效率的减小量A2情景大于B2情景,REGCM4.0模式估算的水分利用效率的减小量RCP8.5情景大于RCP4.5情景。整体来看,RCP气候情景对雨养冬小麦水分利用效率的负面影响更大。Abstract: Investigating the influencing rule of climate change on water use efficiency (WUE) of rain-fed winter wheat can offer scientific reference for agriculture adapting to climate change. Based on yield information and observed soil water data at representative stations, the historical trend of WUE is analyzed. Simulation models for meteorological yield and soil water variation quantity are established, and four different kinds of climate change scenarios, which are outputs by regional climate models of PRECIS and REGCM4.0 are combined to estimate the probable variation trend of WUE in the future years of 2021-2050 for rain-fed wheat. It is validated that in the basic scenario years, simulated yields by the combination of two regional climate models with meteorological yield simulation model are close to actual values, so methods for estimating future yield of wheat is proved feasible. Results by data analyzing shows that the average yield for representative stations varies as a cubic curve during the last 30 years of 1981-2010, and grows faster before the year of 2000. Water consumption of wheat also increases with fluctuating. The average WUE value of rain-fed wheat for representative stations in Gansu, Shanxi and Henan are 13.19 kg·mm-1·hm-2, 12.86 kg·mm-1·hm-2 and 11.28 kg·mm-1·hm-2, respectively. The varying trend of WUE is similar to a quadratic curve, and the maximum value appears in the year of 2003. Estimation results under four different climate change scenarios shows that in 2021-2050, water consumption of winter wheat would increase dramatically, and the increasing amount could reach to 6.2% for all the representative stations and all scenarios averagely. Yields in the future would decrease and some increase, and the variation rate would be 1.4% on average. The value of WUE would decrease 3.8% on average, meanwhile, the variability rate would also decrease. The increase of water consumption would be the main cause for WUE decreasing in the future. From the inter-annual variation during 2021-2050, WUE would show a non-significant trend of increasing under the simulation of PRECIS model, and comparing to the average value of 1981-2010, the decreasing rate of WUE would be more significant under A2 scenario than B2. However, there would be a significant decline trend for WUE simulated by REGCM4.0 model, and under the scenario of RCP8.5, the reduced value of WUE would be higher than that of RCP4.5. Generally speaking, the climate scenario of RCP has even more negative effects on WUE of rain-fed wheat.
-
表 1 代表站冬小麦气象产量线性回归模型参数
Table 1 Parameters of linear regression model for meteorological yield of winter wheat at representative stations
站点 时段 正相关因子 回归系数 负相关因子 回归系数 常数项 渑池 1961—2010年 P(1)* 0.802 Tave(1)* -47.09 -1144.5 P(2)** 20.664 Tmin(10)* -41.798 P** 2.127 Tmin(1)* -32.458 宜阳 1961—2010年 Tmax 9.202 Tmax(11)** -59.177 599.8 P(1) 4.906 P(2)** 10.1 P* 1.546 西峰 1981—2010年 Tave(5) 1018.696 Tmin(5)* -807.948 1843.3 P(10)** 9.274 Tmax(5) -507.127 P(2) 73.29 P(5)** 1.084 天水 1981—2010年 Tmin(9) 21.319 -4085.9 Tmin(1) 176.754 Tmax(6) 125.673 P(1) 78.789 P(2) 55.977 P(4) 18.353 临汾 1961—2010年 P(4)* 2.805 Tave(5)* -79.409 3917.810 Tmax(10)* -94.758 Tmax(4)* -23.005 Tmax(all)* -32.565 注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 表 2 代表站产量模拟相关系数
Table 2 Correlation coefficient for yield simulation
气候模式 站点 变量数 气象产量 单产 PRECIS 渑池 29 0.4217* 0.8587** 宜阳 29 0.3551* 0.9040** 西峰 10 0.4869 0.7565** 天水 10 0.2223 0.3334 临汾 29 0.3169 0.8730** REGCM4.0 渑池 44 0.4058** 0.8493** 宜阳 44 0.3611* 0.8506** 西峰 25 0.3840* 0.6181** 天水 25 0.2934 0.7892** 临汾 44 0.3049* 0.9014** 注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 表 3 代表站冬小麦全生育期土壤水分变化量线性回归模型参数
Table 3 Parameters of linear regression model for soil water variation of the whole growing season of winter wheat at representative stations
站点 时段 正相关因子 回归系数 负相关因子 回归系数 常数项 渑池 1961—2010年 Tave(5)* 13.076 P(3) -0.453 -187.329 Tmin(11) 0.390 P(4)** -0.778 P(5) 0.322 P(all)* -0.181 宜阳 1961—2010年 Tave(4) 3.822 P(4)** -0.175 -149.946 Tave(5)** 6.312 P(5) -0.076 T(all) 2.895 Tmin(12)** 10.321 西峰 1981—2010年 Tave(10) 20.835 Tmax(10)* -7.138 21.011 P(10)** 0.867 Tmax(5) -4.543 P(2)* 1.244 P(5)* -0.634 天水 1981—2010年 Tave(6)** 0.627 Tmin(4) -9.135 -155.832 P(1)* 3.242 P(9) -0.058 Tave(9) 12.474 临汾 1961—2010年 Tave(6)* 109.948 Tmin(11)* -9.052 -268.412 Tmax(5) 5.587 Tmax(6)* -81.384 P(11)* 2.581 P(6) -0.464 注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 表 4 雨养冬小麦水分利用效率的变异系数 (单位:%)
Table 4 Variable coefficient of water use efficiency for rain-fed winter wheat (unit:%)
情景 渑池站 宜阳站 西峰站 天水站 临汾站 A2 27.12 23.49 23.12 31.18 21.86 B2 30.39 17.49 23.90 34.55 11.63 RCP4.5 20.86 21.43 28.55 26.35 18.13 RCP8.5 14.93 23.33 23.91 23.51 24.23 -
[1] 刘桂芳, 卢鹤立.全球变暖背景下的中国西部地区气候变化研究进展.气象与环境科学, 2009, 32(4):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200904017.htm [2] 王馥棠.近十年来我国气候变暖影响研究的若干进展.应用气象学报, 2002, 13(6):755-766. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020699&flag=1 [3] 王建英, 韩相斌, 王超, 等.豫东北主要农作物对气候变暖的响应.气象与环境科学, 2009, 32(1):43-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200901010.htm [4] 居辉, 熊伟, 许吟隆, 等.气候变化对我国小麦产量的影响.作物学报, 2005, 31(10):1340-1343. doi: 10.3321/j.issn:0496-3490.2005.10.017 [5] 田展, 刘纪远, 曹明奎.气候变化对中国黄淮海农业区小麦生产影响模拟研究.自然资源学报, 2006, 21(4):598-607. doi: 10.11849/zrzyxb.2006.04.013 [6] 刘月岩, 刘会灵, 乔匀周, 等.CO2浓度升高对不同水分条件下冬小麦生长和水分利用的影响.中国生态农业学报, 2013, 21(11):1365-1370. http://d.wanfangdata.com.cn/Thesis/Y2333782 [7] 郭安红, 刘庚山, 安顺清, 等.有限供水对冬小麦根系生长发育的影响及其对底墒的利用特征.应用气象学报, 2002, 13(5):621-626. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020579&flag=1 [8] 张丛志, 张佳宝, 赵炳梓, 等.作物对水分胁迫的响应及水分利用效率的研究进展.节水灌溉, 2007(5):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGU200705000.htm [9] 赵鸿, 杨启国, 邓振镛, 等.半干旱雨养区小麦光合作用、蒸腾作用及水分利用效率特征.干旱地区农业研究, 2007, 25(1):125-130. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200701025.htm [10] 罗俊杰, 黄高宝.底墒对旱地冬小麦产量和水分利用效率的影响研究.灌溉排水学报, 2009, 28(3):102-104;111. http://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200903028.htm [11] 李俊, 于沪宁, 刘苏峡.冬小麦水分利用效率及其环境影响因素分析.地理学报, 1997, 52(6):552-560. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB706.008.htm [12] 董宝娣, 师长海, 乔匀周, 等.不同灌溉条件下不同类型冬小麦产量水分利用效率差异原因分析.中国生态农业学报, 2011, 9(19):1096-1103. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105020.htm [13] 惠海滨, 林琪, 刘义国, 等.灌水量和灌水期对超高产小麦灌浆期光合特性及产量的影响.西北农业学报, 2012, 21(8):77-83. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201208014.htm [14] 董浩, 陈雨海, 周勋波.灌溉和种植方式对冬小麦耗水特性及干物质生产的影响.应用生态学报, 2013, 24(7):1871-1878. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201307013.htm [15] 臧贺藏, 刘云鹏, 余鹏, 等.水氮限量供给下两个高产小麦品种物质积累与水分利用特征.麦类作物学报, 2012, 32(4):689-695. doi: 10.7606/j.issn.1009-1041.2012.04.016 [16] 姚玉璧, 王润元, 杨金虎, 等.黄土高原半湿润区气候变化对冬小麦生育及水分利用效率的影响.西北植物学报, 2011, 31(11):2290-2297. http://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201111028.htm [17] 俞满源, 黄占斌, 山仑.不同水分条件下CO2浓度升高对植物生长及水分利用效率的影响.中国生态农业学报, 2003, 11(3):110-112. http://d.wanfangdata.com.cn/Periodical/stnyyj200303035 [18] 王美玉, 赵天宏, 张巍巍, 等.CO2浓度升高与温度、干旱相互作用对植物生理生态过程的影响.干旱地区农业研究, 2007, 25(2):99-103. http://d.wanfangdata.com.cn/Periodical/ghdqnyyj200702021 [19] 熊伟.CERES-Wheat模型在我国小麦区的应用效果及误差来源.应用气象学报, 2009, 20(1):88-94. doi: 10.11898/1001-7313.20090111 [20] 石英, 高学杰, 吴佳, 等.华北地区未来气候变化的高分辨率数值模拟.应用气象学报, 2010, 21(5):580-589. doi: 10.11898/1001-7313.20100507 [21] 王培娟, 张佳华, 谢东辉, 等.A2和B2情景下冀鲁豫冬小麦气象产量估算.应用气象学报, 2011, 2(5):549-557. doi: 10.11898/1001-7313.20110504 [22] Gao X J, Shi Y, Zhang D F, et al.Climate change in China in the 21st century as simulated by a high resolution regional climate model.Chinese Science Bulletin, 2012, 57(10):1188-1195. doi: 10.1007/s11434-011-4935-8 [23] Gao X J, Shi Y, Song R Y, et al.Reduction of future monsoon precipitation over China:Comparison between a high resolution RCM simulation and the driving GCM.Meteorology and Atmospheric Physics, 2008, 100:73-86. doi: 10.1007/s00703-008-0296-5 [24] 朱自玺, 刘荣花, 方文松, 等.华北地区冬小麦干旱评估指标研究.自然灾害学报, 2003, 12(1):145-150. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200301023.htm [25] 许吟隆.应用Hadley中心RCM发展中国高分辨率区域气候情景.气候变化通讯, 2004, 3(5):6-8. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711010018.htm [26] 钱锦霞, 郭建平.郑州地区冬小麦产量构成要素的回归模型.应用气象学报, 2012, 23(4):500-504. doi: 10.11898/1001-7313.20120414 [27] 陈怀亮, 张雪芬, 赵国强, 等.河南省春季气候变化及其对小麦产量构成要素的影响.气象与环境科学, 2006(1):47-52. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200605001041.htm [28] 蒲金涌, 冯建英, 姚晓红, 等.甘肃黄土高原土壤农业水分常数分布特征.干旱地区农业研究, 2005, 26(3):205-209. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200803043.htm [29] 方文松, 陈怀亮, 李树岩, 等.南阳市土壤湿度与气候变化的关系分析.气象与环境科学, 2007, 30(4):13-16. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200704002.htm [30] 国家气象局.农业气象观测规范 (上卷).北京:气象出版社, 1993. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [31] 蒲金涌, 王润元, 王鹤龄, 等.甘肃陇东黄土高原陆面实际蒸散测算方法比较研究.土壤通报, 2014, 45(1):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201401006.htm [32] 杨娜, 刘良明, 向大享, 等.由常规地面气象观测要素估算土壤湿度.华中师范大学学报, 2010, 44(3):527-530. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201003039.htm [33] 周洁, 张志强, 孙阁, 等.不同土壤水分条件下杨树人工林水分利用效率对环境因子的响应, 生态学报, 2013, 33(5):1465-1474. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201305013.htm [34] 王庆伟, 于大炮, 代力民, 等.全球气候变化下植物水分利用效率研究进展.应用生态学报, 2010, 21(12):3255-3265. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201012038.htm