Preliminary Results on Long-term Soil Moisture Variation in Yunnan
-
摘要: 利用1948—2013年美国NOAA/CPC全球0.5°×0.5 °月平均格点化土壤湿度资料、1951—2013年云南地区125个站月降水和1993—2013年22个站月土壤湿度观测资料对云南土壤湿度及其表征的旱涝长期变化进行时空分布及演变特征分析。结果表明:云南地区旱涝变化的空间结构相对简单且具有大尺度特征,长期变化特征明显。由20世纪50年代的滇中部地区偏旱,其余地区偏涝,逐步发展为相反;20世纪90年代开始滇中部地区偏涝,其余地区偏旱,且旱情日趋加重,范围扩展,2010年、2012年和2013年严重干旱蔓延至云南全省。研究揭示,云南冬半年旱涝与前期海温异常密切相关,冬半年云南地区旱涝不同的EOF模态时间变化对应着不同的前期海温异常变化分布。云南全省旱涝一致的第1模态对应前期孟加拉湾、阿拉伯海、西太平洋以及大西洋的海温异常正相关。云南西北—东南旱涝反向的第2模态对应前期孟加拉湾、南海、西太平洋及东太平洋ENSO区海温异常负相关。Abstract: Long-term spatial-temporal distributions of soil moisture anomalies related drought-flood events and their evolution features in Yunnan, China of recent 66 years are explored using 1948-2013 NOAA CPC 0.5°×0.5° global monthly soil moisture data, along with 125-station based monthly observed precipitation for period of 1951-2013, and monthly soil moisture observation from 22 stations for the period of 1993-2013. Comparing with precipitation, soil moisture has some unique physical properties and statistical features, such as longer memory and closer to normal distribution, making it an important component for drought-flood analyzing and monitoring. The mutual validation reveals that the gridded NOAA CPC monthly soil moisture data can capture those major observed drought-flood events very well. The preliminary results show that spatial structures of soil moisture anomaly related drought-flood events in Yunnan, China have relatively simple and large-scale features. The first four leading EOF modes can explain more than 2/3 of total variance of soil moisture variations. The soil moisture related drought-flood events also have obvious long-term variations or trends, such as from 1950s it is drier in central Yunnan and wetter in most rest parts, and then the condition gradually evolved to the opposite, from 1990s the central part of Yunnan becomes wetter than most rest parts. The drought condition tends to become worse since then, especially for the years of 2010, 2012 and 2013, when extreme drought conditions extends to almost everywhere in Yunnan. Further study on possible causes for this spatial-temporal evolution reveals some good relationships between monthly soil moisture variations and global sea surface temperature anomalies (SSTA) one or two months ago, especially in cool season. The 1st EOF mode of soil moisture anomalies, which represents soil moisture anomalies through the whole Yunnan, has good correlation with previous month's SSTA nearby the Bay of Bengal, Arab Sea, the western tropical Pacific and the remote Atlantic, and the 2nd EOF mode which reflects soil moisture anomalies related drought-flood variations from northwest to southeast Yunnan also well correlates with previous month's SSTA in the Bay of Bengal, the South China Sea, western Pacific, and the remote eastern tropical Pacific ENSO region and the tropical Atlantic. The 3rd EOF mode and 4th EOF mode of soil moisture anomalies, which present south to north and east to west drought-flood variations in Yunnan, also relate to unique SSTA in previous months.
-
Key words:
- Yunnan;
- soil moisture;
- drought-flood;
- spatial-temporal distribution
-
图 4 云南西部地区、中部地区、东部地区9个月滑动平均陆面降水和土壤湿度异常的长期变化及气候平均特征
(a) 逐月降水量距平变化,(b) 逐月土壤湿度距平变化,(c) 降水量气候平均,(d) 土壤湿度气候平均
Fig. 4 Long-term (9-month running mean) variations and their climatologies of monthly precipitation and soil moisture in western, central and eastern Yunnan
(a) monthly precipitation anomalies,(b) monthly soil moisture anomalies,(c) climatic monthly precipitation,(d) climatic monthly soil moisture
图 5 云南地区月平均降水量、土壤湿度异常滞后1~3个月的空间自相关系数的时间系列及其气候平均值
(a) 降水量逐月变化,(b) 土壤湿度逐月变化,(c) 降水量逐月气候平均,(d) 土壤湿度逐月气候平均
Fig. 5 Time series and their climatologies of 1-3-month lagged spatial autocorrelations of monthly precipitation anomalies and soil moisture anomalies in Yunnan
(a) monthly precipitation,(b) monthly soil moisture, (c) climatic monthly precipitation,(d) climatic monthly soil moisture
-
[1] 陈隆勋, 朱乾根, 罗会邦, 等.东亚季风.北京:气象出版社, 1991. [2] 郭品文, 宋超辉.南亚和东亚热带夏季风分界域变化.应用气象学报, 2014, 25(5):527-537. doi: 10.11898/1001-7313.20140502 [3] 彭贵芬, 刘瑜, 张一平.云南干旱的气候特征及变化趋势研究.灾害学, 2009, 24(4):40-44. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200904008.htm [4] 杨辉, 宋洁, 晏红明, 等.2009/2010年冬季云南严重干旱的原因分析.气候与环境研究, 2012, 17(3):315-326. doi: 10.3878/j.issn.1006-9585.2011.10134 [5] 钱维宏, 张宗婕.西南区域持续性干旱事件的行星尺度和天气尺度扰动信号.地球物理学报, 2012, 55(5):1462-1471. doi: 10.6038/j.issn.0001-5733.2012.05.004 [6] 邹旭恺, 张强.近半个世纪我国干旱变化的初步研究.应用气象学报, 2008, 19(6):679-687. doi: 10.11898/1001-7313.20080607 [7] 中国气象局. 中国气象干旱图集. 北京: 气象出版社, 2010: 117. [8] 李强子, 闫娜娜, 张飞飞, 等.2010年春季西南地区干旱遥感监测及其影响评估.地理学报, 2010, 65(7):771-778. doi: 10.11821/xb201007001 [9] 侯威, 杨杰, 赵俊虎.不同时间尺度下气象旱涝强度评估指数.应用气象学报, 2013, 24(6):695-703. doi: 10.11898/1001-7313.20130606 [10] 谢五三, 王胜, 唐为安, 等.干旱指数在淮河流域的适用性对比.应用气象学报, 2014, 25(2):176-184. doi: 10.11898/1001-7313.20140207 [11] 李清泉, 孙丞虎, 袁媛, 等.近20年我国气候监测诊断业务技术的主要进展.应用气象学报, 2013, 24(6):666-676. doi: 10.11898/1001-7313.20130603 [12] 陈金华, 杨再强, 杨太明, 等.安徽省土壤水分监测预测系统.应用气象学报, 2011, 22(2):249-256. doi: 10.11898/1001-7313.20110214 [13] 左志燕, 张人禾.中国东部春季土壤湿度的时空变化特征.中国科学:地球科学, 2008, 38(11):1428-1437. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811011.htm [14] Liu Li, Zhang Renhe, Zuo Zhiyan.Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China.Journal of Geographical Research:Atmospheres, 2014, 119(1):54-64. doi: 10.1002/2013JD020940 [15] 李崇银, 刘会荣, 宋洁.2009/2010年冬季云南干旱的进一步研究——前期土壤湿度影响的数值模拟.气候与环境研究, 2013, 18(5):551-561. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201305001.htm [16] 孙菽芬.陆面过程的物理、深化机理和成熟化模型.北京:气象出版社, 2005:1-11. [17] Fan Y, Huug van den Dool.Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present.J Geophys Res, 2004, 109(10):1-8, doi: 10.1029/2003JD004345. [18] Chen M, Xie P, Janowiak J E, et al.Global land precipitation:A 50-yr monthly analysis based on gauge observations.J Hydrometeorology, 2002, 3(3):249-266. doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2 [19] Fan Y, Huug van den Dool.A global monthly land surface air temperature analysis for 1948-present.J Geophys Res, 2008, 113(1):1984-2012, doi: 10.1029/2007JD008470. [20] Fan Y, Huug van den Dool.Verification and intercomparison of multi-model simulated land surface hydrological datasets over the US.J Hydrometeorology, 2011, 12:531-555. doi: 10.1175/2011JHM1317.1 [21] Wahr J, Swenson S, Zlotnicki V, et al.Time-variable gravity from GRACE:First results.Geophys Res Lett, 2004, 31, L11501.doi: 10.1029/2006GL028001. [22] 王杰, 黄英, 曹艳萍, 等.利用GRACE重力卫星观测研究近7年云南省水储量变化.节水灌溉, 2012(5):1-5;15. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201205002.htm [23] 许美玲, 段旭, 杞明辉, 等.云南省天气预报员手册.北京:气象出版社, 2011:1-5. [24] 秦剑, 琚建华, 解明恩.低纬高原天气气候.北京:气象出版社, 1997:65-85. [25] 云文丽, 侯琼, 王海梅, 等.不同土壤水分对向日葵光合光响应的影响.应用气象学报, 2014, 25(4):476-482. doi: 10.11898/1001-7313.20140411 [26] Yun Fan, Huug van den Dool.Bias Correction and forecast skill of NCEP GFS ensemble week-1 and week-2 precipitation, 2-m surface air temperature, and soil moisture forecasts.Wea Forecasting, 2011, 26(3):355-370. doi: 10.1175/WAF-D-10-05028.1 [27] Global Temperature and Precipitation Linear Regressions and Correlations.http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/. [28] 程建刚, 解明恩.近50年云南区域气候变化特征分析.地理科学进展, 2008, 27(5):19-26. doi: 10.11820/dlkxjz.2008.05.003 [29] 刘建刚, 谭徐明, 万金红, 等.2010年西南特大干旱及典型场次旱灾对比分析.中国水利, 2011:9;17-20. doi: 10.3969/j.issn.1671-1408.2011.03.003 [30] Smith T M, Reynolds R W, Peterson T C, et al.Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006).J Climate, 2008, 21(10):2283-2296. doi: 10.1175/2007JCLI2100.1 [31] 肖子牛.印度洋偶极性异常海温的气候影响.北京:气象出版社, 2006:1-16.