Assessment and Distribution of Waterlogging Damage Risks for Melons and Vegetables in Hainan Province from October to November
-
摘要: 为了评估海南省冬种瓜菜苗期生长阶段容易遭受的湿涝灾害,基于1998—2011年海南省18个气象站气象资料、各市县西瓜、豇豆、辣椒、丝瓜4种冬种瓜菜产量及苗期湿涝灾情资料,以降水量、降水日数等因子建立主成分分析综合指标,通过灾情反演构建苗期湿涝致灾等级指标,结合孕灾、灾损和防灾能力进行瓜菜苗期湿涝灾害综合风险分析与区划。结果表明:瓜菜苗期湿涝危险性从西南至东北增加,轻度与重度湿涝风险概率分布趋势相反,苗期湿涝孕灾敏感性从中西部山区向沿海和平原地区增加,瓜菜苗期湿涝灾损风险和防灾能力分布存在差异,且不同瓜菜差异明显;4种瓜菜苗期湿涝综合风险总体分布趋势一致,从西南至东北地区风险等级加重,降水、地势、土地等因素综合导致东部和北部部分地区苗期湿涝的风险高。Abstract: Hainan, as an important agricultural zone for winter melons and vegetables in China, suffers from waterlogging, chilling and drought risks that threat production during its growth period. In order to offer guidance to reduce waterlogging damage and assure production, the theoretical framework of natural disaster risk system is implemented based on meteorological station observations from 1998 to 2011, the yield and planted area data, as well as waterlogging disaster data for melons and vegetables. A waterlogging level index system is constructed through comparing the hazard index with disaster based on the principal component analysis of four factors, i.e., precipitation, rain days, continuous rain days and maximum continuous rain days. A comprehensive waterlogging risk index model for melons and vegetables is built integrating with hazard index, damage sensitivity index, damage loss index and damage prevention capability index.Results show that the waterlogging hazard index increases from southwest to northeast, the risk probability of different level hazard index are different in regions, and the distribution of high and low risk probability are of the opposite. Due to results of disaster hazard spatial pattern, it implicates that more attention should be paid to those high hazard regions. Considering waterlogging sensitivity is partly influenced by slope gradient, the damage index increases from the central mountain to the periphery. Among three disasters, waterlogging causes most yield reduction for paprika, watermelon and cowpea which are in conformity with their biological characteristic. Taking yield loss and production status as factors to represent damage vulnerability and prevention capability, waterlogging damage loss index and prevention capability index differ in different regions. The distribution of comprehensive waterlogging risk index for melons and vegetables is similar for four kinds of melons and vegetables, which increases from southwest to northeast induced by factors such as precipitation, terrain and soil. The distribution characteristic is conformed to the real waterlogging situation in Hainan Province. Results can provide useful information which contribute to a better understanding of disaster damage risk for melons and vegetables and help for the policy formation of agro-meteorological disaster risk management.
-
图 1 瓜菜苗期湿涝危险性分布与等级湿涝风险概率分布
(a) 危险性分布,(b) 轻度湿涝风险概率,(c) 中度湿涝风险概率,(d) 重度湿涝风险概率
Fig. 1 Distribution of waterlogging damage risk and risk probability of different grade index
(a) distribution of damage risk, (b) risk probability of low waterlogging damage, (c) risk probability of medium waterlogging damage, (d) risk probability of high waterlogging damage
表 1 苗期湿涝、冬季寒害、春季干旱对减产率贡献 (单位:%)
Table 1 Contribution rates of yield reduction rate induced by waterlogging, chilling and drought (unit:%)
品种 苗期湿涝 冬季寒害 春季干旱 西瓜 73.6 14.3 112.1 豇豆 42.8 26.4 30.8 辣椒 81.8 2.8 15.4 丝瓜 14.0 47.3 38.7 -
[1] 温泉沛, 霍治国, 马振峰, 等.中国中东部地区暴雨气候及其农业灾情的风险评估.生态学杂志, 2011, 30(10):2370-2380. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201110040.htm [2] Zhang H, Zhang J Q, Han J S.The Assessment and Regionalization of Flood/Waterlogging Disaster Risk in Middle and Lower Reaches of Liao River of Northeast China.Proceedings of Fifth Annual IIASA-DPRI Forum on Integrated Disaster Risk Management, 2005:103-114. [3] 扈海波, 轩春怡, 诸立尚.北京地区城市暴雨积涝灾害风险预评估.应用气象学报, 2013, 24(1):99-108. doi: 10.11898/1001-7313.20130110 [4] Wu X D, Yu D P, Chen Z Y, et al.An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai.Natural Hazards, 2012, 63(2):305-323. doi: 10.1007/s11069-012-0153-1 [5] Huang D P, Zhang R H, Huo Z G, et al.An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method.Natural Hazards, 2012, 64(2):1575-1586. doi: 10.1007/s11069-012-0323-1 [6] 王静静, 刘敏, 权瑞松, 等.中国东南沿海地区暴雨洪涝风险分区及评价.华北水利水电学院学报, 2010, 31(1):14-16. http://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201001004.htm [7] 李柏贞, 周广胜.干旱指标研究进展.生态学报, 2014, 34(5):1043-1052. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200404004.htm [8] 肖志强, 樊明, 赵彦锋.武都山区农业连阴雨灾害时空演变气候特征及风险区划.中国农学通报, 2013, 29(20):181-185. doi: 10.11924/j.issn.1000-6850.2012-2569 [9] Delin S, Berglund K.Management zones classified with respect to drought and waterlogging.Precision Agriculture, 2005, 6(4):321-340. doi: 10.1007/s11119-005-2325-4 [10] Quan R S, Liu M, Lu M, et al.Waterlogging risk assessment based on land use/cover change:A case study in Pudong New Area, Shanghai.Environmental Earth Sciences, 2010, 61(6):1113-1121. doi: 10.1007/s12665-009-0431-8 [11] 周惠成, 张丹.可变模糊集理论在旱涝灾害评价中的应用.农业工程学报, 2009, 25(9):56-61. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200909014.htm [12] 蔡大鑫, 张京红, 刘少军.海南岛万泉河流域暴雨洪涝灾害风险区划研究.中国农学通报, 2013, 29(23):201-209. doi: 10.3969/j.issn.1000-6850.2013.23.035 [13] 王越, 江志红, 张强, 等.用Palmer湿润指数作西北地区东部冬小麦旱涝评估.应用气象学报, 2008, 19(3):342-349. doi: 10.11898/1001-7313.20080310 [14] 吴洪颜, 高苹, 徐为根, 等.江苏省冬小麦湿渍害的风险区划.生态学报, 2012, 32(6):1871-1879. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201206024.htm [15] 陆魁东, 黄晚华, 方丽, 等.气象灾害指标在湖南春玉米种植区划中的应用.应用气象学报, 2007, 18(4):548-554. doi: 10.11898/1001-7313.20070416 [16] 张爱民, 马晓群, 杨太明, 等.安徽省旱涝灾害及其对农作物产量影响.应用气象学报, 2007, 18(5):619-626. doi: 10.11898/1001-7313.20070517 [17] 解文娟, 杨晓光, 杨婕, 等.气候变化背景下东北三省大豆干旱时空特征.生态学报, 2014, 34(21):6232-6243. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201421023.htm [18] 李美荣, 李星敏, 李艳莉, 等.基于连阴雨灾害指数的陕西省苹果生长风险分析.干旱气象, 2011, 29(1):106-109. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201101020.htm [19] 吴利红, 娄伟平, 柳苗, 等.油菜花期降水适宜度变化趋势及风险评估.中国农业科学, 2011, 44(3):620-626. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201103025.htm [20] 陆魁东, 彭莉莉, 黄晚华, 等.气候变化背景下湖南油菜气象灾害风险评估.中国农业气象, 2013, 34(2):191-196. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201302011.htm [21] 温克刚, 吴岩俊.中国气象灾害大典·海南卷.北京:气象出版社, 2009. [22] 霍治国.农业和生物气象灾害.北京:气象出版社, 2009. [23] 周秉荣, 李凤霞, 申双和, 等.从MODIS资料提取土壤湿度信息的主成分分析方法.应用气象学报, 2009, 20(1):114-118. doi: 10.11898/1001-7313.20090115 [24] 霍治国, 刘荣花, 姜燕, 等.气象行业标准——小麦干旱灾害等级.北京:气象出版社, 2007. [25] 卞洁, 李双林, 何金海.长江中下游地区洪涝灾害风险性评估.应用气象学报, 2011, 22(5):604-611. doi: 10.11898/1001-7313.20110511 [26] Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration Guidelines for Computing Crop Water Requirements.FAO Irrigation and Drainage Paper 56, 1998. [27] 马彦霞, 郁继华, 张国斌, 等.壳聚糖对水分胁迫下辣椒幼苗氧化损伤的保护作用.中国农业科学, 2012, 45(10):1964-1971. doi: 10.3864/j.issn.0578-1752.2012.10.009 [28] 许昌燊.农业气象指标大全.北京:气象出版社, 2004. [29] 程智慧.蔬菜栽培学各论.北京:科学出版社, 2010. [30] 江泽林.海南省优势农产品区域布局研究.北京:中国农业出版社, 2005. [31] 周鹏, 杨福孙, 陈汇林, 等.海南岛旱季气候变化对冬季瓜菜生产的影响.热带作物学报, 2013, 34(6):1054-1059. http://www.cnki.com.cn/Article/CJFDTOTAL-RDZX201306010.htm [32] 李香, 赵志忠, 李鹏山.海南岛西部干旱区乐东县水稻生产潜力研究.海南师范大学学报:自然科学版, 2009, 22(1):78-82. http://www.cnki.com.cn/Article/CJFDTOTAL-HNXZ200901023.htm [33] 许莹, 马晓群, 岳伟.安徽省一季稻涝灾损失定量评估研究.安徽农业科学, 2009, 37(2):722-726. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200902117.htm [34] Laosuwan P, Anuchan N.Effects of waterlogging on growth and yield of groundnut.Thai Journal of Agricultural Science, 1992, 25(3):181-188.