The Effect of Different Planetary Boundary Layer Schemes on the Simulation of Near Surface O3 Vertical Distribution
-
摘要: 利用WRF-Chem模式,采用3种边界层参数化方案 (YSU, MYJ和ACM2),针对1个晴空、静稳日 (2013年8月26日20:00—27日20:00(北京时)) 进行模拟,着重分析不同边界层参数化方案对夜间残留层形成及日出前后O3浓度垂直分布形式的模拟效果,并与固城站地面及垂直同步观测资料进行对比。结果表明:3种边界层参数化方案均能够模拟出温度及风速的区域分布形式以及风温垂直结构的变化特征;相比之下,MYJ方案模拟的夜间边界层高度较YSU方案和ACM2方案明显偏高,该对比结果可能是导致近地面污染物浓度模拟差异的重要原因;在夜间稳定层结至日出后稳定状态打破的边界层结构演变过程中,采用YSU方案和ACM2方案模拟的温度和风速垂直扩线形式与观测结果更为接近;同样采用非局地闭合的YSU方案和同时考虑局地和非局地闭合的ACM2方案,对于边界层高度内O3浓度垂直分布形式的模拟效果具有明显优势。Abstract: Located at the base of the troposphere and affected strongly by ground surface, the planetary boundary layer (PBL) is the main passage of air-land interaction and air pollution. The PBL affects the momentum and heat exchange between the ground and atmosphere through the surface force and turbulence transport. The concentration of pollutants on the ground depends on the vertical mixing state of the atmosphere. Thus, the boundary layer parameterization scheme is not only the important part of numerical model for weather forecast, but also the important foundation of air pollution numerical model. A variety of boundary layer parameterization schemes of physical process are developed, which have different effects on the ground meteorological field and pollutant diffusion. To further understand how the boundary layer processes affect the mixing and transport of air pollutants, a sensitivity experiment is designed and the WRF-Chem model with different PBL schemes (MYJ, YSU and ACM2) is utilized to simulate the PBL structures and O3 vertical distributions on a cloudless and steady day (26-27 Aug 2013). Simulations of temperature field and wind speed field using different PBL schemes are compared to observations. The analysis focuses on the difference of simulations of residual layer formation at night and O3 vertical distribution after sunrise using different PBL schemes. Simulations are compared with the radiosonde data of ozone at Gucheng Station. Results show that the regional distribution characteristics and vertical structures of the temperature and wind speed can be well simulated by all these three PBL parameterization schemes, but the simulation of the ground temperature and wind speed are generally on the high side. The nighttime boundary layer height simulated by MYJ scheme is much higher than those simulated by YSU and ACM2 schemes, leading to the difference in near surface pollutants concentration. In the evolution process of the boundary layer structure from stable state in nighttime to slightly disturbance state after sunrise, the vertical temperature and wind structures simulated by YSU and ACM2 schemes are more consistent with observations. Simulations on effects of boundary layer process upon O3 vertical distribution using YSU and ACM2 schemes also have obvious advantages over MYJ scheme. It should be noted that the simulation is only on a clear and steady weather case, and for complex weather conditions, effects of boundary layer schemes need further verification.
-
Key words:
- planetary boundary layer scheme;
- ozone;
- numerical simulation
-
图 2 不同PBL参数化方案对2013年8月27日夜间 (00:00) 及午后 (15:00) 温度场模拟结果与观测对比
(色阶底图为模拟结果,实心圆点代表观测结果)
Fig. 2 Comparison of the near-surface temperature at 0000 BT and 1500 BT on 27 Aug 2013 simulated by different PBL schemes with observation
(simulated and observed values are indicated by shaded base graphics and shaded circles, respectively)
图 4 不同PBL参数化方案对2013年8月27夜间 (00:00) 及午后 (15:00) 地面风速场模拟结果与观测对比
(色阶底图为模拟结果,实心圆点代表观测结果)
Fig. 4 Comparison of the near-surface wind speed at 0000 BT and 1500 BT on 27 Aug 2013 simulated by different PBL schemes with observation
(simulated and observed values are indicated by shaded base graphics and shaded circles, respectively)
-
[1] Tran H N Q, Molders N.Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska.Atmospheric Research, 2011, 99(1):39-49. doi: 10.1016/j.atmosres.2010.08.028 [2] 陈炯, 王建捷.北京地区夏季边界层结构日变化的高分辨率模拟对比.应用气象学报, 2006, 17(4):403-411. doi: 10.11898/1001-7313.20060403 [3] 刘梦娟, 陈敏.BJ-RUC系统对北京夏季边界层的预报性能评估.应用气象学报, 2014, 25(2):212-221. doi: 10.11898/1001-7313.20140211 [4] 陈炯, 王建捷.边界层参数化方案对降水预报的影响.应用气象学报, 2006, 17(增刊): 11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201619071.htm [5] 韩茜, 魏文寿, 刘明哲, 等.乌鲁木齐降雪与非降雪天气边界层结构变化特征.应用气象学报, 2011, 22(3): 292-301. doi: 10.11898/1001-7313.20110305 [6] 刘煜, 周秀骥, 李维亮.对流层臭氧的数值模拟实验.应用气象学报, 1990, 1(1): 45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900109&flag=1 [7] 李乐泉, 周明煜, 李兴生.夜间城市大气边界层和气溶胶的相互作用.应用气象学报, 1992, 3(1):32-41. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920110&flag=1 [8] Hong S Y, Pan H L.Nonlocal boundary layer vertical diffusion in a mediumrange forecast model.Mon Wea Rev, 1996, 124:2322-2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 [9] Pleim J E, Chang J S.A non-local closure model for vertical mixing in the convective boundary layer.Atmos Environ, 1992, 26A:965-981. https://www.researchgate.net/publication/222024000_A_non-local_closure_model_for_vertical_mixing_in_the_convective_boundary_layer [10] Gayno G.Development of a Higher-order, Fog-producing Boundary Layer Model Suitable for Use in Numerical Weather Prediction.The Pennsylvania State University, 1994:1-104. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.5218 [11] 杨贵成.WRF-Chem中沙尘天气过程对模式分辨率及边界层方案的敏感性试验.安徽农业科学, 2012, 40(6):3462-3466. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201206092.htm [12] Cheng F Y, Chin S C, Liu T H.The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area.Atmos Environ, 2012, 54:714-727. doi: 10.1016/j.atmosenv.2012.01.029 [13] 王颖, 张镭, 胡菊, 等.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析.高原气象, 2010, 29(6):1397-1407. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201006005.htm [14] Hu X M, Klein P M, Xue M.Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments.J Geophys Res Atmos, 2012, 118:1-16. https://www.researchgate.net/publication/260333592_Evaluation_of_the_updated_YSU_planetary_boundary_layer_scheme_within_WRF_for_wind_resource_and_air_quality_assessments [15] Neu U, Kunzle T, Wanner H.On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration-a case study.Boundary-Layer Meteorology, 1994, 69:221-247. doi: 10.1007/BF00708857 [16] Mebust M R, Eder B K, Binkowski F S, et al.Models-3 community multiscale air quality (CMAQ) model aerosol component-2.Model evaluation.J Geophys Res, 2003, 108(D6):4184, doi: 10.1029/2001JD001410. [17] Mao Q, Gautney L L, Cook T M, et al.Numerical experiments on MM5-CMAQ sensitivityto various PBL schemes.Atmos Environ, 2006, 40(17):3092-3110, doi: 10.1016/j.atmosenv.2005.12.055. [18] Herwehe J A, Otte T L, Mathur R, et al.Diagnostic analysis of ozone concentrations simulated by two regional-scale air quality models.Atmos Environ, 2011, 45(33):5957-5969, doi: 10.1016/j.atmosenv.2011.08.011. [19] Hu X M, Ma Z Q, Lin W L.Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain:A case study.Science of the Total Environment, 2014, 499:228-237. doi: 10.1016/j.scitotenv.2014.08.053 [20] Ma Z Q, Zhang X L, Xu J, et al.Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.Journal of Environmental Sciences, 2011, 23(8):1316-1324. doi: 10.1016/S1001-0742(10)60557-8 [21] Zaveri R A, Peters L K. A new lumped structure photochemical mechanism for large-scale applications. J Geophys Res, 1999, 104:30387-30415. doi: 10.1029/1999JD900876 [22] Wild O, Zhu X, Prather M J. Fast-J:Accurate simulation of inand below-cloud photolysis in tropospheric chemical model.J Atmos Chem, 2000, 37:245-282. doi: 10.1023/A:1006415919030 [23] Zaveri R A, Easter R C, Wexler A S. A computationally efficient multicomponent equilibrium solver for aerosols (MESA). J Geophys Res, 2005, 110, D24203, doi: 10.1029/2004JD005618. [24] Kain J S.The Kain-Fritsch convective parameterization:An update.J Appl Meteor, 2004, 43(1):170-181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 [25] Chem S H, Sun W Y.One-dimensional time dependent cloud model.J Meteor Soc Japan, 2002, 80(1):99-118. doi: 10.2151/jmsj.80.99 [26] Mlawer E J, Taubman S T, Brown P D, et al.RRTM, a validated correlated-K model for the longwave.J Geophys Res, 1997, 102(D14):16663-16682. doi: 10.1029/97JD00237 [27] Dudhia J.Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model.Journal of the Atmospheric Sciences, 1989, 46(20):3077-3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 [28] Janjic Z I.Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model.NOAA/NWS/NCEP Office Note 437, 2002:61. https://www.researchgate.net/publication/228749162_Nonsingular_Implementation_of_the_Mellor-Yamada_Level_25_Scheme_in_the_NCEP_Meso_Model [29] Brljaars A C M.The parameterization of the surface fluxes in large-scale models under free convection.Quart J Roy Meteor Soc, 1995, 121(522):255-270. doi: 10.1002/(ISSN)1477-870X [30] Chen F, Duhhia J.Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system.Part Ⅰ:Model implementation and sensitivity.Mon Wea Rev, 2001, 129(4):569-585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 [31] Zhang Q, Streets D G, Carmichael G R, et al.Asian emissions in 2006 for the NASA INTEX-B mission.Atmos Chem Phys, 2009, 9:5131-5153. doi: 10.5194/acp-9-5131-2009 [32] Guenther A, Karl T, Harley P, et al.Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).Atmos Chem Phys, 2006, 6:3181-3210. doi: 10.5194/acp-6-3181-2006 [33] Hong S Y, Noh Y, Dudhia J.Anew vertical diffusion package with explicit treatment of entrainment processes.Mon Wea Rev, 2006, 134:2318-2341. doi: 10.1175/MWR3199.1 [34] Mellor G L, Yamada T.Development of a turbulence closure model for geophysical fluid problems.Reviews of Geophysics, 1982, 20(4):851-875. doi: 10.1029/RG020i004p00851