Verification and Diagnostics for Data Assimilation System of Global GRAPES
-
摘要: 中国气象局数值预报中心新近升级的GRAPES全球三维变分同化系统的大气基本状态变量在物理属性与定义的网格和坐标上与预报模式保持一致,是一个完全针对GRAPES预报模式的同化系统。该系统不仅有利于减小分析误差,也是构建GRAPES四维变分同化系统的基本环节之一。该文通过与观测资料的对比、与国际其他业务中心分析场的对比,以及中期数值预报的检验,对新的GRAPES全球三维变分同化系统性能进行较全面讨论,并通过对这一系统的检验,探索资料同化系统性能的检验方法,尤其是观测资料同化效果的定量评价方法。诊断结果表明:在宏观特征上,GRAPES变分同化系统的分析场与欧洲中期数值预报中心和美国国家环境预测中心的分析场十分相似, 但细节上仍有差别。这些差别主要源自GRAPES同化系统中探空、地面报、掩星以及飞机报观测的贡献偏大,而卫星垂直探测仪观测资料的作用尚未充分发挥。从探测单要素来讲,风及湿度观测的作用发挥不够。此外,青藏高原周围地区、模式高层及赤道地区分析场偏差较大,它们与模式地形及高层的处理等有关系,这些问题有待进一步改进。Abstract: Numerical Weather Prediction Center of China Meteorological Administration has upgraded the global GRAPES (Global/Regional Assimilation and PrEdiction System) variation data assimilation system. The new data assimilation system employs the same coordinate, grids and atmospheric state variables as those of the GRAPES model. It can reduce analysis errors due to the interpolation and variable transformations, and also provide basics for developing GRAPES four-dimension variation assimilation system. Some key characteristics of the new global GRAPES data assimilation system are discussed, and then the performance is evaluated in detail, by comparing with observations, analysis or reanalysis data from advanced operational numerical weather prediction centers, and the medium-range forecast from background and analysis fields and different forecast models. Some guidelines for further optimizing the system is also given based on diagnosis and quantitatively estimating the impact of observations. Results show that the GRAPES data assimilation system assimilates conventional observations, satellite radiances and radio occultation observations effectively, making analyses closer to the real atmosphere and improving the forecast skill. The analysis of GRAPES are similar to those of European Centre for Medium-Range Weather Forecasts and National Center for Environmental Prediction at the large-scale circulation fields. However, some differences still remains, which actually expose issues of GRAPES. These differences are related to overlarge contributions from radiosonde, surface, ships, aircraft and radio occultation observations, and the relatively weaker influence of satellite radiance observations.There is broad consensus among the global numerical weather prediction centers that these types of observations tend to be the highest-ranked contributors to forecast skill: Microwave temperature sounder, hyper-spectral infrared sounder, radiosondes, aircraft observations, radio occultation and atmospheric motion vectors, although not necessarily uniformly in this order. However, contributions of the microwave temperature sounder and hyper-spectral infrared sounder in GRAPES are not dominant, because GRAPES still uses less radiance data, and on the other hand, the bias correction effect is not so good.Contributions of wind and humidity observation are less in GRAPES. Additionally, biases in regions of the Tibet Plateau, upper levels of the model and the tropics are relatively larger compared to observations and the reanalysis, which are related to the treatment method of topography and upper boundary of model. To gain better analysis and forecast skill, there is a requirement to place more emphasis on the above issues.
-
图 5 G-3DVar与ERA-Interim在850,500 hPa和250 hPa位势高度的相关系数和均方根误差的时间演变
(a) 北半球的相关系数, (b) 南半球的相关系数, (c) 北半球的均方根误差, (d) 南半球的均方根误差
Fig. 5 Time evolution of correlation coefficients and root mean square errors between G-3DVar and ERA-Interim at 850, 500 hPa and 250 hPa for the Northern Hemisphere and the Southern Hemisphere
(a) correlation coefficient of the Northern Hemisphere, (b) correlation coefficient of the Southern Hemiphere, (c) root mean square error of the Northern Hemisphere, (d) root mean square error of the Southern Hemiphere
图 7 G-3DVar与ERA-Interim分析场月平均偏差的纬度-高度剖面图
(a) 位势高度 (单位:gpm),(b) 温度 (单位:K),(c) 比湿 (单位:kg·kg-1),(d)u分量 (单位:m·s-1),(e)v分量 (单位:m·s-1)
Fig. 7 Analysis comparisons between GRAPES and ERA_Interim for geopertential height (unit:gpm)(a), temperature (unit:K)(b), specific humidity (unit:kg·kg-1)(c), u wind (unit:m·s-1)(d) and v wind (unit:m·s-1)(e)
表 1 估计的新息与分析余差的平均值和均方差等统计信息
Table 1 Statistics of mean and variance for innovation and residual
观测 要素 ξb ξa σb σa rab 探空 气压/hPa -0.4014 -0.0217 0.8037 0.4522 0.32 u分量/(m·s-1) -0.006 0.0054 3.7618 2.812 0.56 v分量/(m·s-1) -0.0202 0.014 3.6782 2.7799 0.57 相对湿度/% 3.0262 -1.0595 22.2519 15.7933 0.50 地面 地表气压/hPa -0.2361 -0.021 0.941 0.6754 0.52 船舶 地表气压/hPa -0.1467 0.0107 1.0522 0.7872 0.56 云导风 风的u分量/(m·s-1) 0.3533 0.1679 3.823 2.8708 0.56 飞机 温度/K 0.4076 0.1766 1.4039 1.1394 0.66 u分量/(m·s-1) 0.0121 -0.0123 3.6421 2.7596 0.57 v分量/(m·s-1) -0.1173 -0.0149 3.6005 2.7251 0.57 掩星 折射率/% -0.00073 -0.00048 0.00013 0.00005 0.15 微波温度计
(NOAA18)通道5亮温/K 0.1113 0.0755 0.2291 0.2119 0.86 通道6亮温/K -0.0567 0.0776 0.1976 0.1612 0.67 通道7亮温/K 0.0377 0.0179 0.2105 0.1793 0.73 通道8亮温/K 0.0945 0.0709 0.2319 0.2057 0.79 通道9亮温/K 0.2925 0.1876 0.2803 0.2126 0.58 通道10亮温/K 0.4785 0.4873 0.2485 0.2087 0.70 AIRS 通道平均亮温/K 0.1492 0.1117 0.52 0.48 0.85 表 2 背景场检查的相关统计信息
Table 2 Statistics information of background check
观测 要素 资料使用
率/%系统指定
的αqc本文式 (4) 统
计的αqc质控范围 探空 气压/hPa 98 5.0 2.9 [-2.6, 1.7] (400~850 hPa) u, v分量/(m·s-1) 100 9.0 2.5 [-7.5, 7.5] 相对湿度/% 97 3.0 1.6 [-41, 45] 船舶 地表气压/hPa 73 5.0 3.7 [-2.1, 2.3] 地面 地表气压/hPa 73 3.0 2.4 [-2.1, 1.7] 云导风 u, v分量/(m·s-1) 99 5.0 1.5 [-7.3, 8.0] 飞机 u, v分量/(m·s-1) 99 4.0 1.8 [-7.3, 7.3] 温度/K 99 4.0 2.2 [-2.4, 3.2] 掩星 折射率/% 90 4.0 2.0 [-1.2, 1.2] 微波温度计 AMSU-A亮温/K 74 2.0 2.0 高光谱 AIRS亮温/K 8 2.0 -
[1] Talagrand O.A posteriori Verification of Analysis and Assimilation Algorithms//Proceedings of the ECMWF Workshop on Diagnosis of Data Assimilation Systems.1998:17-28. [2] Desroziers G, Berre L, Chapnik B, et al. Diagnosis of observation, background and analysis-error statistics in observation space.Q J R Meteorol Soc, 2005, 131:3385-3396. doi: 10.1256/qj.05.108 [3] 庄世宇, 薛纪善, 朱国富, 等.GRAPES全球三维变分同化系统——基本设计方案与理想试验.大气科学, 2005, 29(6):872-884. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506003.htm [4] 薛纪善, 陈德辉.数值预报系统GRAPES的科学设计与应用北京:科学出版社, 2008. [5] Xue J S.Progresses of researches on numerical weather prediction in China:1999-2002.Adv Atmos Sci, 2004, 21(3):467-474. doi: 10.1007/BF02915573 [6] 薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):602-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1 [7] 陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. doi: 10.11898/1001-7313.20060614 [8] 薛纪善, 庄世宇, 朱国富, 等.GRAPES新一代全球/区域变分同化系统研究.科学通报, 2008, 53(20):2408-2417. doi: 10.3321/j.issn:0023-074X.2008.20.003 [9] 黄丽萍, 伍湘君, 金之雁.GRAPES模式标准初始化方案设计与实现.应用气象学报, 2005, 16(3):374-384. doi: 10.11898/1001-7313.20050312 [10] 马旭林, 庄照荣, 薛纪善, 等.GRAPES非静力数值预报模式的三维变分资料同化系统的发展.气象学报, 2009, 67(1):50-60. doi: 10.11676/qxxb2009.006 [11] Xue Jishan, Zhang Hua, Zhu Guofu, et al.Development of 3D Variational Assimilation System for ATOVS Data in China//Proceedings of the Thirteenth International TOVS Study Conference, 2003:30-36. [12] 朱国富, 薛纪善, 张华, 等.GRAPES变分同化系统中卫星辐射率资料的直接同化.科学通报, 2008, 53(20):2424-2427. doi: 10.3321/j.issn:0023-074X.2008.20.005 [13] Liu Yan, Xue Jishan.Assimilation of global navigation satellite radio occultation observations in GRAPES:Operational implementation.J Meteor Res, 2014, 28(6), doi: 10.1007/s13351-014-4028-0. [14] Lynch P, Huang X Y.Initialization of the HIRLAM model using a digital filter.Mon Wea Rev, 1992, 120:1019-1034. doi: 10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2 [15] Hong S Y, Lim J O J.The WRF single-moment 6-class microphysics scheme (WSM6).J Korean Meteor Soc, 2006, 42:129-151. http://www.docin.com/p-765016479.html [16] Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave.J Geophys Res, 1997, 102 (D14):16663-16682. doi: 10.1029/97JD00237 [17] Troen I, Mahrt L.A simple model of the atmospheric boundary layer sensitivity to surface evaporation.Bound-Layer Meteor, 1986, 37:129-148. doi: 10.1007/BF00122760 [18] Arakawa A, Schubert W H.Interaction of a cumulus cloud ensemble with the large-scale environment.J Atmos Sci, 1974, 31:674-701. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 [19] Dee D P, Uppala S M.The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Q J R Meteorol Soc, 2011, 137:553-597. doi: 10.1002/qj.v137.656 [20] Eugenia Kalnay.大气模式、资料同化和可预报性.北京:气象出版社, 2005. [21] 薛谌彬, 何财福, 龚建东, 等.静止卫星云导风的质量控制及在同化中的应用.应用气象学报, 2013, 24(3):356-364. doi: 10.11898/1001-7313.20130312 [22] 王瑞春, 龚建东, 张林.GRAPES变分同化系统中动力平衡约束的统计求解.应用气象学报, 2012, 23(2):129-138. doi: 10.11898/1001-7313.20120201 [23] 王瑞春, 龚建东, 张林, 等.热带风压场平衡特征及其对GRAPES同化预报的影响研究Ⅰ.平衡特征分析.大气科学, 2015, doi: 10.3878/j.issn.1006-9895.1412.14233. [24] 薛纪善.气象卫星资料同化的科学问题与前景.气象学报, 2009, 67(6):903-911. doi: 10.11676/qxxb2009.088 [25] 任强, 董佩明, 薛纪善.台风数值预报中受云影响微波卫星资料的同化试验.应用气象学报, 2009, 20(2):137-146. doi: 10.11898/1001-7313.20090202 [26] Geer A, Baordo F, Bormann N, et al.Assimilation of Water Vapour, Cloud and Precipitation from microwave sounders.http://www.ecmwf.int/sites/default/files/geer_allsky_sounders_new.pdf, 2014, ECMWF annual simian.