Meteorological Conditions and Impact Factors of a Heavy Air Pollution Process at Xi'an in December 2013
-
摘要: 使用高分辨监测资料对2013年12月18—25日西安严重污染天气气象条件及影响因素进行分析。结果表明:严重污染期间,亚洲大陆中高纬度500 hPa呈一槽一脊经向环流型,陕西处于地面冷高压南部均压场控制下。空气质量转好时,高空锋区明显增强,地面冷锋快速东移、南压,边界层高度增大,近地层集聚污染物显著抬升。严重污染与非污染时段气象条件差异明显。除接地逆温外,近地层不同高度存在悬浮逆温,相对湿度呈湿-干-湿垂直分布,温湿条件有利于污染加强。严重污染属于以湿霾为主的重度霾天气,日平均能见度小于1.5 km,边界层高度小于0.7 km,郊区湿霾每日持续时间平均比市区长约5 h。严重污染期间,细颗粒物浓度远高于粗颗粒物,随时间增加趋势明显。颗粒物平均浓度在午后出现峰值,可能与边界层高度偏低、关中盆地地形因素密切相关,本地地面风场日变化对污染有加重效应。Abstract: As one of the most famous historical and cultural cities, Xi'an is located at the central part of the Guanzhong Basin, its northern and southern areas are the Loess Plateau and the Qinling Mountains, respectively. Increasing trend of air pollution weather disturbs Xi'an in recent years. Based on high resolution observations from air quality monitor, laser radar and automatic weather stations, meteorological conditions and impact factors of heavy air pollution process from 18 Dec to 25 Dec in 2013 are analyzed. Results show that during heavy air pollution process, the circulation at 500 hPa is meridional circulation pattern including a trough and a ridge in high latitude area. Shaanxi Province is located at the front of warm ridge with weak wind, and south to the Mongolia cold high on ground. When air quality improves, the front and wind at 500 hPa increase, and ground cold front move southeast quickly. Laser radar monitoring indicates the aerosol conglomerations below 0.5 km are uplift and the boundary layer height increases significantly. Heavy air pollution process leads to severe haze and its daily average visibility is less than 1.5 km. The boundary layer height is less than 0.7 km and its peak appears at about 1500 BT. Temperature and humidity conditions are conducive to strengthen pollution, significantly different from common periods. An inversion of temperature exists at 2~3.2 km or 0.7~1.5 km height and relative vertical humidity distribution is wet-dry-wet below 3.5 km. Severe haze is mainly wet haze and its daily average duration in suburban is 5 hours longer than urban. Concentration of fine particle PM2.5 is much higher than that of coarse particulate defined by PM10 minus PM2.5 during heavy air pollution process. The former has obvious increasing trend and the latter doesn't change obviously with time. Concentrations of PM10 and PM2.5 reach peaks at 1300 BT and 2200 BT, and maintain low values from 0500 BT to 1000 BT every day. Pollutant concentration rises fast from 1000 BT to 1300 BT. Unlike typical process with a downward trend after noontime, there is an average concentration peak of pollutants in Xi'an during the heavy air pollution process. This phenomenon is probably caused by factors including very low boundary layer height, the Guanzhong Basin terrain and diurnal variation of local ground wind.
-
Key words:
- air quality;
- meteorological conditions;
- impact factors
-
图 2 2013年12月500 hPa平均高度 (实线,单位:dagpm)、温度 (虚线,单位:℃)、风场 (矢量) (a)18日20:00—25日20:00,(b)26日20:00—27日20:00
Fig. 2 500 hPa average geopotential height (solid line, unit:dagpm), temperature (dotted line, unit:℃) and wind (vecter) (a)2000 BT 18 Dec to 2000 BT 25 Dec in 2013, (b)2000 BT 26 Dec to 2000 BT 27 Dec in 2013
图 3 2013年12月15日08:00—27日08:00西安上空水平风场 (风羽) 和相对湿度 (等值线, 单位:%)(a)、水汽通量 (矢量, 单位: g·cm-1·hPa-1·s-1) 和散度 (等值线, 单位: 10-8g·cm-2·hPa-1·s-1)(b)、垂直速度 (等值线, 单位: Pa·s-1)(c) 时间-高度剖面
Fig. 3 Time and height section of wind (barb) and relative humidity (isoline, unit:%)(a), water vapor flux (vector, unit:g·cm-1·hPa-1·s-1) and flux divergence (isoline, unit:10-8 g·cm-2·hPa-1·s-1)(b), vertical velocity (unit: Pa·s-1)(c) at Xi'an from 0800 BT 15 Dec to 0800 BT 27 Dec in 2013
表 1 2013年12月16—26日西安环境空气质量和地面气象要素
Table 1 Ambient air quality and surface meteorological elements at Xi'an from 16 Dec to 26 Dec in 2013
日期 AQI PM2.5浓度 (μg·m-3) 日平均能见度/km 日平均风速/(m·s-1) 日平均相对湿度/% 日平均气温/℃ 16日 107 93 4.2 0.8 66 3.4 17日 178 180 2.9 0.8 75 1.3 18日 410 404 1.1 0.9 83 0.8 19日 499 420 0.8 0.8 83 -0.3 20日 499 421 1.2 0.8 76 1.6 21日 450 385 1.3 0.8 77 0.7 22日 436 421 1.5 0.7 73 -0.8 23日 500 502 1.1 0.6 84 -1.1 24日 500 597 1.0 0.7 82 0.1 25日 500 547 1.4 0.6 77 1.6 26日 113 135 7.8 1.0 50 0.5 -
[1] 吴兑, 吴晓京, 李菲, 等.1951—2005年中国大陆霾的时空变化.气象学报, 2010, 68(5):680-688. doi: 10.11676/qxxb2010.066 [2] 胡亚旦, 周自江.中国霾天气的气候特征分析.气象, 2009, 35(7):73-78. doi: 10.7519/j.issn.1000-0526.2009.07.011 [3] 廖国莲, 曾鹏, 郑凤琴, 等.1960—2009年广西霾日时空变化特征.应用气象学报, 2011, 22(6):732-739. doi: 10.11898/1001-7313.20110611 [4] 丁国安, 陈尊裕, 高志球, 等.北京城区低层大气PM10和PM2.5垂直结构及其动力特征.中国科学D辑:地球科学, 2005, 35(增刊Ⅰ):31-44. http://www.wenkuxiazai.com/doc/71063ec50c22590102029d08-3.html [5] Schichtel B A, Husar R B, Falker S R, et al.Haze treands over the United States 1980-1995.Atmos Environ, 2001, 35(30):5205-5210. doi: 10.1016/S1352-2310(01)00317-X [6] 徐祥德, 丁国安, 卞林根, 等.北京城市大气环境污染机理与调控原理.应用气象学报, 2006, 17(6):815-827. doi: 10.11898/1001-7313.20060618 [7] 唐宜西, 张小玲, 熊亚军, 等.北京一次持续霾天气过程气象特征分析.气象与环境学报, 2013, 29(5):12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201305003.htm [8] 蒲维维, 赵秀娟, 张小玲.北京地区夏末秋初气象条件对PM2.5污染的影响.应用气象学报, 2011, 22(6):717-723. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110609&flag=1 [9] 孙燕, 张备, 严文莲, 等.南京及周边地区一次严重烟霾天气的分析.高原气象, 2010, 29(3):794-800. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201003030.htm [10] 颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi: 10.11898/1001-7313.20100301 [11] 吴兑, 廖国莲, 邓雪娇, 等.珠江三角洲霾天气的近地层输送条件研究.应用气象学报, 2008, 19(1):1-8. doi: 10.11898/1001-7313.20080101 [12] 毛宇清, 李聪, 沈澄, 等.两次秸秆焚烧污染过程的气象条件对比分析.气象, 2013, 39(11):1473-1480. doi: 10.7519/j.issn.1000-0526.2013.11.011 [13] 童尧青, 银燕, 钱凌, 等.南京地区霾天气特征分析.中国环境科学, 2007, 27(5):584-588. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ200705005.htm [14] 吴其重, 王自发, 徐文帅, 等.多模式模拟评估奥运赛事期间可吸入颗粒物减排效果.环境科学学报, 2010, 30(9):1739-1748. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201009002.htm [15] 谢学军, 李杰, 王自发.兰州城区冬季大气污染日变化的数值模拟.气候与环境研究, 2010, 15(5):695-703. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201005019.htm [16] 司鹏, 高润祥.天津雾和霾自动观测与人工观测的对比分析.应用气象学报, 2015, 26(5):240-246. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150212&flag=1 [17] 姜雪. 西安市空气污染物浓度统计特征及其气象影响研究. 西安: 长安大学, 2012. [18] 胡琳, 苏静, 陈建文, 等.西安地区霾天气特征及影响因素分析.干旱区资源与环境, 2014, 28(7):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201407008.htm [19] 蔡新玲, 王繁强, 姜创业, 等.西安城市PM10污染特征及持续重污染过程分析.气象科技, 2008, 36(6):697-700. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200806004.htm [20] 鹤千山, 潘鹄, 黄颖, 等.上海干霾与湿霾气溶胶消光特征的比较.兰州大学学报:自然科学版, 2013, 49(4):498-502. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201304010.htm [21] 姜大膀, 王式功, 郎咸梅, 等.兰州市区低空大气温度层结特征及其与空气污染的关系.兰州大学学报:自然科学版, 2001, 37(4):133-139. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200104024.htm [22] 唐家萍, 谭桂容, 谭畅.基于L波段雷达探空资料的重庆市区低空逆温特征分析.气象科技, 2012, 40(5):789-793. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205019.htm [23] 江琪, 银燕, 秦彦硕, 等.黄山地区气溶胶吸湿增长特性数值模拟研究.气象科学, 2013, 33(3):237-245. doi: 10.3969/2012jms.0150 [24] 马金, 郑向东.边界层高度的经验计算及与探空观测对比分析.应用气象学报, 2011, 22(5):567-576. doi: 10.11898/1001-7313.20110506 [25] 杜川利, 唐晓, 李星敏, 等.城市边界层高度变化特征与颗粒物浓度影响分析.高原气象, 2014, 33(5):1383-1392. doi: 10.7522/j.issn.1000-0534.2013.00077 [26] 李成才, 刘启汉, 毛节泰, 等.利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染.应用气象学报, 2004, 15(6):641-650. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040695&flag=1 [27] 李兰, 魏红明, 魏静, 等.武汉市PM10污染日变化及其高污染时段特征.环境科学与技术, 2007, 30(1):56-60. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200701016.htm [28] 张强.兰州大气污染浓度与局地气候环境因子的关系.兰州大学学报:自然科学版, 2003, 39(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200301020.htm