Summer Precipitation in the Huaihe River Basins and Relevant Climate Indices
-
摘要: 基于旋转经验正交函数分解 (REOF) 方法探讨淮河流域1961—2010年夏季降水与厄尔尼诺/南方涛动 (ENSO)、北大西洋涛动 (NAO)、印度洋偶极子 (IOD)、太平洋年代际振荡 (PDO) 之间的关系,并进一步分析各气候因子不同位相单独以及联合对淮河流域夏季降水的影响。结果表明:淮河流域夏季降水与ENSO,PDO,NAO,IOD等气候因子具有较稳定的相关性,其中,PDO和IOD是影响淮河流域夏季降水的关键因子,且PDO与夏季降水呈显著负相关关系;各气候因子的冷暖位相单独及联合对淮河流域夏季降水的影响不同,PDO的冷期以及NAO,IOD冷位相使流域北部的夏季降水量呈显著增加趋势,PDO分别联合ENSO,NAO和IOD的冷、暖位相对流域北部地区和淮河上游地区的夏季降水影响显著。Abstract: ENSO having significant impacts on global climate changes. Evident relations are found between ENSO and precipitation anomaly changes across the Huaihe River Basins. Besides, impacts on precipitation changes in the Huaihe River Basins can also be expected from PDO, NAO and other climate indices. These influences and related stability of the influence are investigated, and combined effects of these climate indices on seasonal precipitation changes in the Huaihe River Basins are studied. In this case, objectives of this paper are to investigate influences of ENSO, NAO, IOD and PDO on the summer precipitation regimes across the Huaihe River Basins, and related stability of the influence; explore whether ENSO, NAO, IOD and PDO are the dominant influencing factors behind occurrences or intensities of precipitation events across the Huaihe River Basins; and understand how climate indices influence seasonal precipitation changes across the Huaihe River Basins, especially from the viewpoint of water vapor transportation. The result may provide valuable information for improving the long-term forecasting of precipitation using its relationship with ENSO, NAO, IOD and PDO, and will provide important theoretical basis for water resources management and disaster prevention.Based on rotated empirical orthogonal decomposition method (REOF), the relationship between the summer precipitation in the Huaihe River Basins and the El Niño/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO) is analyzed. Influences of individual climatic factor or combined influences of climate factors on summer precipitation in the Huaihe River Basins are discussed.Results indicate that PDO and IOD are the key factors influencing summer precipitation in the Huaihe River Basins, where the PDO is in negative significant correlation with summer precipitation. Strong correlation is found between the REOF time coefficients for the summer precipitation anomaly and the climatic factors, and correlations are persistent and steady. Warm and cool periods of ENSO, NAO, IOD, PDO have different impacts on summer precipitation. Cold periods of IOD, NAO and PDO can trigger significantly increasing trend of summer precipitation in the northern Huaihe River Basins. PDO combined with ENSO, NAO and IOD heavily affects summer precipitation and this influence modifies spatial patterns of summer precipitation under influences of individual climate factor. Combined PDO, ENSO, NAO and IOD have evident impacts on summer precipitation, and evident impacts of these climatic factors are also found on precipitation in the northern Huaihe River Basins, also the upper Huaihe River Basins.
-
图 3 单一气候因子不同冷、暖位相 (时期) 对夏季降水的影响 (单位:%)
(饼图中,灰色区域代表上升的站点,白色区域代表下降的站点; ▲代表显著上升,▼代表显著下降)
Fig. 3 Precipitation anomaly for cold and warm periods of each climatic index in summer (unit:%)
(the gray area in the pie bar denotes the number of stations with increasing, and the white area in the pie bar denotes the number of stations with decreasing; ▲denotes significant increasing, ▼denotes significant decreasing)
表 1 REOF时间系数和前一年气候因子相关系数
Table 1 Correlation coefficients between the temporal pattern of the REOF and climate indices one year ahead
前一年气候因子 PC1 PC2 PC3 PC4 PC5 ENSO 0.06 -0.04 -0.02 -0.08 0.11 NAO 0.17 0.11 -0.15 -0.17 0.18 PDO 0.004 -0.08 -0.09 -0.19 -0.17 IOD 0.15 0.23 0.30 -0.04 -0.19 表 2 REOF时间系数和当年气候因子相关系数
Table 2 Correlation coefficients between the temporal pattern of the REOF and climate indices in current year
当年气候因子 PC1 PC2 PC3 PC4 PC5 ENSO -0.06 -0.03 0.03 -0.13 0.05 NAO -0.13 0.01 -0.14 -0.20 -0.02 PDO 0.12 -0.05 -0.41 -0.33 0.10 IOD 0.02 0.03 -0.12 -0.12 -0.04 表 3 各气候因子不同位相组合的情况
Table 3 Different combinations of climatic indics
情形 气候因子位相 A ENSO冷位相/PDO冷位相—ENSO冷位相/PDO暖位相 B ENSO暖位相/PDO冷位相—ENSO暖位相/PDO暖位相 C NAO冷位相/PDO冷位相—NAO冷位相/PDO暖位相 D NAO暖位相/PDO冷位相—NAO暖位相/PDO暖位相 E IOD冷位相/PDO冷位相—IOD冷位相/PDO暖位相 F IOD暖位相/PDO冷位相—IOD暖位相/PDO暖位相 -
[1] 高歌, 陈德亮, 徐影.未来气候变化对淮河流域径流的可能影响.应用气象学报, 2008, 19(6):741-748. doi: 10.11898/1001-7313.20080614 [2] Jones D A, Trewin B C.On the relationships between the El Niño-Southern Oscillation and Australian land surface temperature.International Journal of Climatology, 2000, 20:697-719. doi: 10.1002/(ISSN)1097-0088 [3] Wang B, Wu R, Fu X.Pacific-East Asian teleconnection:How does ENSO affect East Asian climate?Climate, 2000, 13:1517-1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 [4] Raut B, Jakob C, Reeder M J.Rainfall changes over Southwestern Australia and their relationship to the Southern annular mode and ENSO.J Climate, 2014, 27(15):5801-5814. doi: 10.1175/JCLI-D-13-00773.1 [5] 信忠保, 谢志仁.ENSO事件对淮河流域降水的影响.海洋预报, 2005, 22(2):38-46. doi: 10.11737/j.issn.1003-0239.2005.02.006 [6] 叶正伟, 许有鹏, 潘光波.江淮下游汛期降水与ENSO冷暖事件的关系.地理研究, 2013, 32(10):1824-1832. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201310007.htm [7] 高辉.淮河夏季降水与赤道东太平洋海温对应关系的年代际变化.应用气象学报, 2006, 17(1):1-9. doi: 10.11898/1001-7313.20060101 [8] Xiao M Z, Zhang Q, Singh V P.Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China.International Journal of Climatology, 2014, doi: 10.1002/joc.4228. [9] Wei F Y, Zhang T.Oscillation characteristics of summer precipitation in the Huaihe River valley and relevant climate background.Sci China, Ser D:Earth Sci, 2009, doi: 10.1007/s11430-009-0151-7. [10] 周波涛, 夏冬冬.淮河流域夏季降水与前冬北太平洋涛动联系的年代际变化.中国科学:地球科学, 2013, 43:547-555. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201304006.htm [11] 郝立生, 丁一汇, 闵锦忠.东亚季风环流演变的主要模态及其与中国东部降水异常的联系.高原气象, 2012, 31(4):1007-1018. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201204016.htm [12] 刘永强, 丁一汇.ENSO事件对我国天气气候的影响.应用气象学报, 1992, 13(4):473-481. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920476&flag=1 [13] Zhang Q, Xiao M Z, Singh V P, et al.Max-stable based evaluation of impacts of climate indices on extreme precipitation processes across the Poyang Lake basin, China.Global and Planetary Change, 2014, 122:271-281. doi: 10.1016/j.gloplacha.2014.09.005 [14] Wang Y M, Li S L, Luo D H.Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation.J Geophys Res, 2009, 114:D02112. https://www.researchgate.net/publication/237954833_Seasonal_response_of_Asian_monsoonal_climate_to_the_Atlantic_Mutidecadal_Oscillation [15] Chakravorty S, Chowdary J S, Gnanaseelan C.Spring asymmetric mode in the tropical Indian Ocean:Role of El Niño and IOD.Climate Dyn, 2013, 40(5-6):1467-1481. doi: 10.1007/s00382-012-1340-1 [16] Liu N, Li S H.Predicting Summer Rainfall over the Yangtze-Huai Region Based on Time-scale Decomposition Statistical Downscaling.Amer Meteor Soc, 2014, 29:162-176. https://www.researchgate.net/publication/277682621_Predicting_Summer_Rainfall_over_the_Yangtze-Huai_Region_Based_on_Time-Scale_Decomposition_Statistical_Downscaling [17] Bai X Z, Wang J, Sellinger C, et al.Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO.J Geophys Res, 2012, 117:C03002. http://adsabs.harvard.edu/abs/2012JGRC..117.3002B [18] Meyers G, McIntosh P, Pigot L, et al.The years of El Niño, La Nia, and interactions with the tropical Indian Ocean.J Climate, 2007, 20:2872-2880. doi: 10.1175/JCLI4152.1 [19] Ouyang R, Lin W, Fu G, et al.Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years.Hydrology and Earth System Science, 2014, 18:3651-3661. doi: 10.5194/hess-18-3651-2014 [20] Hannachi A, Jolliffe I T, Stephenson D B.Empirical orthogonal functions and related techniques in atmospheric science:A review.International Journal of Climatology, 2007, 27(9):1119-1152. doi: 10.1002/(ISSN)1097-0088 [21] Zhang Q, Sun P, Li J F, et al.Spatiotemporal properties of droughts and related impacts on agriculture in Xinjiang, China.International Journal of Climatology, 2015, doi: 10.1002/joc.4052. [22] 魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 1999. [23] Hannachi A, Jolliffe I T, Stephenson D B.Empirical orthogonal functions and related techniques in atmospheric science:A review.International Journal of Climatology, 2007, 27(9):1119-1152. doi: 10.1002/(ISSN)1097-0088 [24] 东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120104&flag=1 [25] 裴浩, 郝璐, 韩经纬.近40年内蒙古候降水变化趋势.应用气象学报, 2012, 23(5):543-550. doi: 10.11898/1001-7313.20120504 [26] 赵亮, 邹力, 王成林, 等.ENSO年东亚夏季风异常对中国江、淮流域夏季降水的影响.热带气象学报, 2006, 22(4):360-366. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200604006.htm [27] Yu R C, Wang B, Zhou T J.Tropospheric cooling and summer monsoon weakening trend over East Asia.Geophys Res Lett, 2004, 31:L22212. doi: 10.1029/2004GL021270 [28] 吴统文, 钱正安.青藏高原冬春积雪异常与中国东部地区夏季降水关系的进一步分析.气象学报, 2000, 58(5):570-581. doi: 10.11676/qxxb2000.059 [29] 孙丞虎, 李维京, 张祖强, 等.淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究.应用气象学报, 2005, 16(2):129-138. doi: 10.11898/1001-7313.20050217 [30] 杜银, 谢志清, 肖卉.中国东部夏季降水异常与青藏高原冬季积雪的关系.气象科学, 2014, 34(6):647-655. doi: 10.3969/2013jms.0083