留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气低频变化对福建前汛期典型持续性暴雨影响

陈彩珠 高建芸 黄丽娜 游立军 林昕 陈琳

陈彩珠, 高建芸, 黄丽娜, 等. 大气低频变化对福建前汛期典型持续性暴雨影响. 应用气象学报, 2016, 27(1): 75-84. DOI: 10.11898/1001-7313.20160108..
引用本文: 陈彩珠, 高建芸, 黄丽娜, 等. 大气低频变化对福建前汛期典型持续性暴雨影响. 应用气象学报, 2016, 27(1): 75-84. DOI: 10.11898/1001-7313.20160108.
Chen Caizhu, Gao Jianyun, Huang Lina, et al. Effects of atmospheric low-frequency variation on typical persistent heavy rains during pre-flood season in Fujian. J Appl Meteor Sci, 2016, 27(1): 75-84. DOI:  10.11898/1001-7313.20160108.
Citation: Chen Caizhu, Gao Jianyun, Huang Lina, et al. Effects of atmospheric low-frequency variation on typical persistent heavy rains during pre-flood season in Fujian. J Appl Meteor Sci, 2016, 27(1): 75-84. DOI:  10.11898/1001-7313.20160108.

大气低频变化对福建前汛期典型持续性暴雨影响

DOI: 10.11898/1001-7313.20160108
资助项目: 

福建省科技厅科技计划重点项目 2011Y0008

公益性行业 (气象) 科研专项 GYHY201306067

详细信息
    通信作者:

    高建芸, email: fzgaojyun@163.com

Effects of Atmospheric Low-frequency Variation on Typical Persistent Heavy Rains During Pre-flood Season in Fujian

  • 摘要: 在分析福建前汛期典型持续性暴雨过程大气低频变化特征基础上,建立了福建前汛期典型持续性暴雨大气低频扰动物理概念模型:典型持续性暴雨发生期间,对流层高层朝鲜半岛至渤海湾为低频低压,青藏高原西侧为弱高压,副热带西风急流核位于长江口至东海上空,福建上空为低频辐散区;对流层中层高度场低频分量中高纬度地区若出现贝加尔湖阻塞高压加强型、乌拉尔山及鄂霍次克海双阻塞高压加强型、鄂霍次克海阻塞高压加强型和乌拉尔山阻塞高压加强型4种低频扰动之一,福建上空为低频低值区;对流层低层低频流场福建上空为低频气旋控制,气旋中心位于江南或南海上空,如此高低空低频系统配置将引起异常的低频垂直经向环流,从而导致典型持续性暴雨的形成。
  • 图  1  典型持续性暴雨过程200 hPa 30~60 d低频分量合成图

    (a) 高度场 (单位:gpm), (b) 纬向风场 (单位:m·s-1), (c) 辐散场 (单位:10-6 m·s-1)

    Fig. 1  Composite of 30-60 d low-frequency fields at 200 hPa for typical persistent heavy rain processes

    (a) geopotential height (unit:gpm), (b) zonal wind (unit:m·s-1), (c) divergence (unit:10-6 m·s-1)

    图  2  典型持续性暴雨过程500 hPa中高纬度4种低频扰动型合成图 (单位:gpm)

    (a) 低频贝阻加强型, (b) 低频双阻加强型, (c) 低频鄂阻加强型, (d) 低频乌阻加强型

    Fig. 2  Categorical composites of low-frequency geopotential height field types at 500 hPa for typical persistent heavy rain processes (unit:gpm)

    (a) the Lake Baikal block high strengthened type, (b) the double block high strengthened type, (c) the Okhotsk Sea block high strengthened type, (d) the Ural block high strengthened type

    图  3  典型持续性暴雨过程850 hPa流场和涡度场两种低频扰动型合成图

    (a) 江南低频气旋型流场,(b) 江南低频气旋型涡度场,(c) 南海低频气旋型流场,(d) 南海低频气旋型涡度场

    Fig. 3  Categorical composites of low-frequency disturbance field types at 850 hPa (shaded for low-frequency vorticity) for typical persistent heavy rain processes

    (a) the wind field of the Yangtze River cyclone low-frequency type, (b) the vorticity field of the Yangtze River cyclone low-frequency type, (c) the wind field of cyclone low-frequency type, (d) the vorticity field of South China Sea cyclone low-frequency type

    图  4  3条主要低频水汽通道整层水汽通量 (阴影) 及矢量 (单位:g·cm-1·hPa-1·s-1) 和水汽通量散度 (等值线,单位:10-6g·cm-2·hPa-1·s-1) 的低频扰动合成

    (a) 索马里—孟加拉湾水汽输送通量和矢量,(b) 副热带高压西南侧水汽输送通量和矢量,(c) 西风带水汽输送通量和矢量,(d) 索马里—孟加拉湾水汽输送通量散度,(e) 副热带高压西南侧水汽输送通量散度,(f) 西风带水汽输送通量散度

    Fig. 4  Vertical integrated water vapor flux (the shaded) and vector (unit:g·cm-1·hPa-1·s-1) and water vapor flux divergence (the contour, unit:10-6g·cm-2·hPa-1·s-1)

    (a) vapor transport flue and vector of Somali to the Bay of Bengal, (b) vapor transport flux and vector of southwest to subtropical high, (c) vapor transport flux and vector of the westerly, (d) vapor transport flux divergence of Somali to the Bay of Bengal, (e) vapor transport flux divergence of southwest to subtropical high, (f) vapor transport flux divergence of the westerly

    图  5  典型持续性暴雨过程115°~120°E平均的垂直经向环流

    (阴影区为垂直速度,流线为经向风速和垂直速度二维流线,经向风单位:m/s,垂直速度单位:10-3 Pa/s) (a) 平均垂直经向环流,(b)1998年垂直经向环流,(c)2010年垂直经向环流

    Fig. 5  Vertical meridional circulation field along 115°-120°E of typical persistent heavy rain processes

    (the shaded is for vertical velocity, the stream is for meridional wind speed and vertical velocity dimensional, unit of meridional wind:m/s, unit of vertical speed:10-3 Pa/s) (a) mean vertical meridional circulation, (b) the case in 1998, (c) the case in 2010

    图  6  福建前汛期典型持续性暴雨低频扰动物理概念模型

    Fig. 6  Physical concept model of low-frequency disturbance for typical persistent heavy rain processes in Fujian

  • [1] 谭晶, 王彰贵, 陈荣幸, 等.热带大气低频振荡时空结构与ENSO的关系.气候变化, 2004(4):183-188. http://cdmd.cnki.com.cn/Article/CDMD-10730-2009181762.htm
    [2] 黄海燕, 何金海, 朱志伟.大气季节内振荡的研究进展及其在延伸期预报中的应用.气象与减灾研究, 2011, 34(3):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201103002.htm
    [3] Madden R A, Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pasific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [4] 徐国强, 藏建升, 周伟灿.1998年京津冀夏季风的低频振荡与降水的特征.应用气象学报, 2001, 12(3):42-51. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010341&flag=1
    [5] 程胜, 李崇银.北半球冬半年平流层大气低频振荡特征研究.大气科学, 2006, 30(4):660-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604010.htm
    [6] 李崇银.大气低频振荡.气象, 1993, 19(1):207-209. http://cdmd.cnki.com.cn/Article/CDMD-10300-1013340796.htm
    [7] 高辉, 陈隆勋, 何金海, 等.亚洲赤道地区大气动能的纬向传播.气象学报, 2005, 63(1):21-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501002.htm
    [8] Kemball-Cook Susan, Wang Bin.Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation.Journal of Climate, 2001, 14(13):2923-2942. doi:  10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
    [9] Yun Kyung-SookK, Ren Baohua, Ha Kyung.The 30-60 day oscillation in the East Asian summer monsoon and its time-dependent association with the Enso.Tellus, 2009, 61(5):565-578. doi:  10.1111/j.1600-0870.2009.00410.x/abstract
    [10] 琚建华, 孙丹, 吕俊梅.东亚季风涌对我国东部大尺度降水过程的影响分析.大气科学, 2007, 31(6):1129-1139. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706010.htm
    [11] 陶诗言, 卫捷.夏季中国南方流域性致洪暴雨与季风涌的关系.气象, 2007, 33(3):10-18. doi:  10.7519/j.issn.1000-0526.2007.03.002
    [12] 琚建华, 孙丹, 吕俊梅.东亚季风区打气季节内振荡经向与纬向传播特征分析.大气科学, 2008, 32(3):523-529. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200803008.htm
    [13] 高建芸, 陈彩珠, 黄丽娜, 等.2010年福建前汛期典型持续性暴雨过程的低频特征分析.气象科技进展, 2013, 3(6):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301012.htm
    [14] 章丽娜, 林鹏飞, 熊喆, 等.热带大气季节内振荡对华南前汛期降水的影响.大气科学, 2011, 35(3):560-570. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015579026.htm
    [15] Wheeler M C, Hendon H H.An all-season real-time multi variate mjo index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132(8):1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [16] 丁一汇, 梁萍.基于MJO的延伸期预报.气象, 2010, 36(7):111-122. doi:  10.7519/j.issn.1000-0526.2010.07.018
    [17] 孙国武, 冯建英, 陈伯民, 等.大气低频振荡在延伸期预报中的应用进展.气象科技进展, 2012, 2(1):12-18. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201201008.htm
    [18] 王跃男, 陈隆勋, 何金海, 等.夏季青藏高原热源低频振荡对我国东部降水的影响.应用气象学报, 2009, 20(1):37-45. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090405&flag=1
    [19] 林爱兰, 梁建茵, 谷德军.热带大气季节内振荡对东亚夏季风区的影响及不同时间尺度变化研究进展.热带气象学报, 2006, 24(1):11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200801003.htm
    [20] 张婷, 魏凤英, 韩雪.华南汛期降水与南半球关键系统低频演变特征.应用气象学报, 2011, 22(3):11-20. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110302&flag=1
    [21] 周兵, 文继芬.1998年夏季我国东部降水与大气环流异常及其低频特征.应用气象学报, 2007, 18(2):3-10. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070225&flag=1
    [22] 王遵娅, 丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报, 2008, 19(6):72-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080610&flag=1
    [23] Krishnamarti T N, Subrahmangam D.The 30-50 day mode at 850mb during MONEX.J Atmos Sci, 1982, 39:2088-2095. doi:  10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2
    [24] 章嘉基, 葛玲.中长期天气预报基础.北京:气象出版社, 1995:27-35.
    [25] 黄丽娜, 高建芸, 陈彩珠, 等.福建前汛期持续性强降水的大气低频特征分析.气象, 2014, 40(6):723-732. doi:  10.7519/j.issn.1000-0526.2014.06.009
    [26] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法 (第四版).北京:气象出版社, 2007:343-384.
    [27] 孔春燕, 孙国武, 信飞, 等. 大气低频波与我国东部汛期雨带的研究//第27届中国气象学会年会副热带季风与气候变化分会场论文集, 2010: 453-467.
    [28] 黄荣辉, 张振洲, 黄刚, 等.夏季东亚季风区水汽输送特征及其与南亚夏季风区水汽输送的差别.大气科学, 1998, 22(4):460-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.007.htm
    [29] 常越, 何金海, 刘芸芸, 等.华南旱、涝年前汛期水汽输送特征的对比分析.高原气象, 2006, 25(6):1064-1070. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200606012.htm
    [30] 申乐琳, 何金海, 周秀骥, 等.近50年来中国夏季降水及水汽输送特征研究.气象学报, 2010, 68(3):918-931. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201006016.htm
    [31] 何金海, 刘芸芸, 常越.西北地区夏季降水异常及其水汽输送和环流特征分析.干旱气象, 2005, 23(1):10-16. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200501001.htm
    [32] 董立清, 任金声, 徐瑞珍, 等.黄河中游强暴雨过程的中低纬度环流特征和水汽输送.应用气象学报, 1996, 7(2):160-168. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960225&flag=1
    [33] 孙颖, 丁一汇.1997年东亚夏季风异常活动在汛期降水中的作用.应用气象学报, 2002, 13(3):22-32. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020338&flag=1
  • 加载中
图(6)
计量
  • 摘要浏览量:  2801
  • HTML全文浏览量:  1204
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-03
  • 修回日期:  2015-09-22
  • 刊出日期:  2016-01-31

目录

    /

    返回文章
    返回