Numerical Modeling of Hailstorms with AgI Seeding
-
摘要: 云数值模拟是研究降雹过程和人工防雹试验的重要手段。利用三维冰雹云AgI催化模式,对北京1996年6月10日的一次降雹过程进行AgI不同催化高度、催化剂量和催化时间的系列催化模拟试验,并优选催化方案,为外场防雹设计和作业提供依据。在催化系列模拟中发现,不同催化高度的催化剂均在上升到-5℃高度后开始核化。在2.1~4.9 km高度范围内催化,AgI成核率比较高,防雹效果较好。核化的人工冰晶有效弥补了该高度上自然冰晶的不足。小剂量催化,可在减雹的同时增加部分降雨量,而大剂量催化,在减雹的同时会减少降雨。在催化时间、剂量和高度的系列催化试验中得出,采用在模拟的第15分钟在5 km高度附近播撒AgI,连续4次以5×106 kg-1的催化剂量进行催化,催化效果较好,可减少降雹量约60%,同时可避免降雨量的大幅减少。Abstract: Cloud numerical simulations are important ways in research of hail processes and hail suppression activities. A 3-D hail model is used to simulate a hailfall case in Beijing on 10 Jun 1996. Series silver iodide (AgI) seeding simulations are designed on seeding height levels, seeding rates and starting seeding times, to get a best seeding scheme which can be used to advise outfield hail suppression operations. The 3-D hail model calculates 27 microphysical processes, which includes condensation, deposition, evaporation, collection, ice nucleation, ice multiplication, melting and freezing, auto conversions of cloud to rain, ice to graupel and graupel to hail. Seeding code is based on cloud chamber results of the mechanism of ice-forming processes by AgI which can be identified as deposition, contact freezing, condensation freezing and immersion freezing nucleation. The total nucleation activities are the sum of contributions from different nucleation modes. Humidity, temperature, cloud droplets concentration and cloud holding time are the main influence factors in AgI nucleation processes. The horizontal domain of the model is 96 km by 96 km with a constant grid increment of 1.2 km, and vertical resolution is 700 m and 20 km high. The time step is 2 s, and sounding data at 0800 BT are used as the initial.In all seeding simulations of different height levels, AgI particles start to nucleate only when they are moved to regions where air temperature is lower than-5℃. If seeding within 2.1-4.9 km height, much more ice nucleation happens, thus resulting in good hail suppression effect. The artificial ice particles make up insufficient natural ice particles. The seeding effect greatly depends on seeding amount. When the amount is less than 5×105 kg-1, hail precipitation is suppressed and rainfall is enhanced. When the amount is bigger than 1×107 kg-1, hail processes are greatly reduced and the rain processes also are weakened. For distributions of updrafts and cloud water, seeding at 12th, 15th, and 18th min, more ice nucleus is nucleated, which makes more graupel particles and better hail suppression effects than other seeding time tests. Among the series of seeding experiments, the best scheme is seeding with 5×106 kg-1 near 5 km height, at the 15th min of simulation, when hail precipitation is decreased about 60% and no much rainfall is lost.
-
Key words:
- hail process simulation;
- AgI seeding;
- series seeding experiments
-
图 1 冰雹云模拟第24分钟各种水成物含量等值线 (蓝色为云水,灰色为冰晶,橙色为霰,红色为冰雹,绿色为雨水,等值线值为0.1,1,2 g·kg-1) 及温度等值线 (黑色)、流场 (矢量) 的垂直剖面分布 (a) 模拟的最大上升速度 (b) 及总降雨量和降雹量 (c) 随时间分布
Fig. 1 Subsection of mixing ratios of water substances (cloud water in the blue contour, ice in the grey contour, graupel in the orange contour, hail in the red contour, rain water in the green contour, contour values are 0.1, 1, 2 g·kg-1) and temperature (black contour), vector of the 24th min simulation results (a) time series of simulated maximum updraft (b) and total rainfall with hail precipitation (c)
图 4 催化后12 min模拟的接近地面催化 (a),7~8层催化 (b),10~11层催化 (c) 的核化冰晶数量 (黑色等值线, 单位:L-1)、自然冰晶数量 (红色等值线, 单位:L-1)、霰含量 (填色,等值线0.1,1,2 g·kg-1) 及温度 (蓝色等值线, 单位:℃) 和流场 (矢量) 分布
Fig. 4 Subsections of simulation results at time point of 12 min after seeding near ground (a), 7-8 level (b), 10-11 level (c) of nucleation ice particles (the black contour, unit:L-1), natural ice particles (the red contour, unit:L-1), graupel mixing ratios (the shaded with values of 0.1, 1, 2 g·kg-1), temperature (the blue contour, unit:℃) and vector
图 7 云中总水成物含量和AgI气溶胶粒子浓度 (Naer,蓝色线) 和包含在液态水中的碘化银粒子浓度 (Naim,绿色线) 及流场 (矢量) 和温度 (黑色线, 单位:℃) 垂直分布 (总水成物混合比 (填色) 等值线间隔为1,2,3,4 g·kg-1,Naer和Naim的等值线分别为1,10,100 L-1和1000 L-1) (a) 催化时刻,(b) 催化后10 min
Fig. 7 Subsections of mixing ratios of total water substances (the shaded) and number concentrations of AgI aerosols (Naer, the blue contour) and AgI particles immersed in drops (Naim, the green contour), vector and temperature (the black contour, unit:℃)(total water substance in shaded contour with values of 1, 2, 3 g·kg-1 and 4 g·kg-1, Naer and Naim with values of 1, 10, 100 L-1 and 1000 L-1) (a) seeding time point, (b)10 min after seeding
表 1 不同催化高度系列试验的降雹量分布
Table 1 Hailfall amonts of series simulations at different seeding vertical levels
垂直层 高度/km 降雹量/kt 1~2 0~1.4 102 3~4 1.4~2.8 87 4~5 2.1~3.5 80 5~6 2.8~4.2 75 6~7 3.5~4.9 73 7~8 4.2~5.6 57 8~9 4.9~6.3 66 9~10 5.6~7.0 87 10~11 6.3~7.7 123 11~12 7.0~8.4 134 表 2 不同催化剂量系列试验的降雹量分布
Table 2 Hailfall amonts of series simulations with different seeding amounts
催化剂量/kg-1 催化剂总量/g 降雹量/kt 5×104 0.65 137 1×105 1.29 124 5×105 6.45 107 1×106 12.9 75 5×106 64.5 57 1×107 129 31 5×107 645 9.9 表 3 不同催化开始时间系列试验的降雹量分布
Table 3 Hailfall amonts of series simulations with different seeding start times
催化开始时间/min 降雹量/kt 36 139 30 136 27 134 24 128 21 103 18 79 15 51 12 68 9 79 6 95 -
[1] Xie B, Zhang Q, Wang Y.Trends in hail in China during 1960-2005.Geophys Res Lett, 2008, 35, L13801, doi: 10.1029/2008GL034067. [2] Changnon S A.Long-term fluctuations in hail incidences in the United States.J Clim, 2000, 13:658-664. doi: 10.1175/1520-0442(2000)013<0658:LTFIHI>2.0.CO;2 [3] Cao Z.Severe hail frequency over Ontario, Canada:Recent trend and variability.Geophys Res Lett, 2008, 35, L14803, doi: 10.1029/2008GL034888. [4] WMO.Expert Meeting to Review the Present Status of Hail Suppression.Geneva:WMO-TD No.764, 1995. [5] WMO.WMO Documents on Weather Modification.Abu Dhabi, 2010. [6] 盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2003. [7] 许焕斌.人工影响天气动力学研究.北京:气象出版社, 2014. [8] 段英, 许焕斌.爆炸防雹中的云微物理机制的探讨.气象学报, 2001, 59(3):334-340. doi: 10.11676/qxxb2001.035 [9] 许焕斌, 王思微.关于爆炸防雹方法的理论依据和技术要领的探讨.气象科学研究院院刊, 1989, 4(3):311-318. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198903009.htm [10] 葛润生, 姜海燕, 彭红.北京地区雹暴气流结构的研究.应用气象学报, 1998, 9(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980101&flag=1 [11] 朱君鉴, 刁秀广, 黄秀韶.一次冰雹风暴的CINRAD/SA产品分析.应用气象学报, 2004, 15(5):579-589. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040571&flag=1 [12] 朱敏华, 俞小鼎, 夏峰, 等.强烈雹暴三体散射的多普勒多天气雷达分析.应用气象学报, 2006, 17(2):215-225. doi: 10.11898/1001-7313.20060213 [13] 王令, 郑国光, 康玉霞, 等.多普勒天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 17(3):281-288. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060349&flag=1 [14] 胡胜, 罗聪, 张羽, 等.广东大冰雹风暴单体的多普勒天气雷达特征.应用气象学报, 2015, 26(1):57-65. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150106&flag=1 [15] 洪延超, 肖辉, 李宏宇, 等.冰雹云中微物理过程研究.大气科学, 2002, 26(3):421-432. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200203012.htm [16] 胡朝霞, 李宏宇, 肖辉, 等.旬邑冰雹云的数值模拟及累积带特征.气候与环境研究, 2008, 8(2):196-208. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200302006.htm [17] 郭学良, 黄美元, 洪延超, 等.三维冰雹分档强对流云数值模拟研究.大气科学, 2001, 25(5):707-719. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200105012.htm [18] 许焕斌, 田利庆.强对流云中"穴道"的物理含义和应用.应用气象学报, 2008, 19(3):372-379. doi: 10.11898/1001-7313.20080315 [19] Noppel H, Blahak U, Seifert A.Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme.Atmos Res, 2010, 96:286-301. doi: 10.1016/j.atmosres.2009.09.008 [20] 许焕斌, 段英.冰雹形成机制的研究并论人工雹胚与自然雹胚的"利益竞争"防雹假说.大气科学, 2001, 25(2):277-288. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200102016.htm [21] 陈宝君, 肖辉.过冷雨水低含量条件下冰雹形成和增长机制及其催化效果的数值模拟.大气科学, 2007, 31(2):273-290. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200702009.htm [22] 胡朝霞, 齐彦斌, 郭学良, 等.青藏高原东部冰雹形成机理的数值模拟.气候与环境研究, 2007, 12(1):37-48. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200701004.htm [23] 郭恩铭, 张纪淮, 胡志晋, 等.冰雹云和多心冰雹结构的观测与分析.辽宁气象, 2003, 3:6-9. doi: 10.3969/j.issn.1673-503X.2003.01.004 [24] 黄燕, 徐华英.播撒碘化银粒子进行人工防雹的数值试验.大气科学, 1994, 18(5):612-622. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK405.011.htm [25] 何观芳, 胡志晋.不同云底温度雹云成雹机制及其引晶催化的数值研究.气象学报, 1998, 56(1):31-45. doi: 10.11676/qxxb1998.003 [26] Curic M, Janc D, Vuckovic V.Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model.Meteor Atmos Phys, 2007, 95(3):179-193. http://www.citeulike.org/article/1172126 [27] Farley R D.Numerical modeling of hailstorms and hailstone growth.Part III:Simulation of an Alberta hailstorm-natural and seeded cases.J Climate Appl Meteor, 1987, 26:789-812. doi: 10.1175/1520-0450(1987)026<0789:NMOHAH>2.0.CO;2 [28] 周非非, 肖辉, 黄美元, 等.人工抑制上升气流对冰雹云降影响的数值试验研究.南京气象学院学报, 2005, 28(2):153-162. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200502001.htm [29] 肖明静, 郭学良, 肖稳安.碘化银、液态CO2播撒对流云防雹增雨的数值模拟.南京气象学院学报, 2006, 29(1):768-775. http://mall.cnki.net/magazine/Article/NJQX200601006.htm [30] 巴特尔, 单久涛, 博格.人工防雹催化效果的数值模拟.安徽农业科学, 2013, 41(7):3038-3040. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201307088.htm [31] 楼小凤, 孙晶, 史月琴, 等.减弱对流云降水的AgI催化原理的数值模拟研究.气象学报, 2014, 72(4):782-793. doi: 10.11676/qxxb2014.044 [32] DeMott P J.Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols.Atmos Res, 1995, 38(3-4):63-99. https://www.researchgate.net/publication/222064479_Quantitative_descriptions_of_ice_formation_mechanisms_of_silver_iodide-type_aerosols [33] 刘诗军, 胡志晋, 游来光.碘化银核化过程的数值模拟研究.气象学报, 2005, 63(1):30-40. doi: 10.11676/qxxb2005.004