Climatic Prediction of Spring Sowing Period in the Middle and Lower Reaches of the Yangtze Based on DERF2.0
-
摘要: 基于1983—2012年国家气候中心第2代月动力延伸模式 (DERF2.0) 回报资料和春播历史资料,结合NCEP/NCAR再分析资料,选取影响长江中下游地区春播期气候条件的关键环流因子。利用最优子集回归方法建立针对长江中下游地区春播期气候条件的动力模式解释应用预测模型,并对不同起报时次的模式解释应用预测结果进行检验评估。检验结果表明:该解释应用方案对于长江中下游春播期气候条件有较好的预测能力,且随着起报时间的临近,预测技巧整体呈上升趋势。1983—2012年的回报检验还显示,解释应用方案能够较好地模拟出连续不利日数和不利日数的年际变率,同时对年代际变率也有所体现。Abstract: Based on the hindcast data of the second generation monthly dynamic extended range forecast model (DERF2.0) of National Climate Center and historical spring sowing data, combined with NCEP/NCAR reanalysis data, correlation analysis is conducted between historical spring sowing data and reanalysis data and model hindcast data, respectively. Regions with anomalies correlation coefficient (ACC) passing significant test are defined as key circulation zones, and the overlapping areas where both anomalies correlation coefficients passing the significant test are selected as key influencing factors of climatic conditions of spring sowing period in the middle and lower reaches of the Yangtze. Using historical time series of selected factors of certain circulation variables, e.g., geopotential height of 200, 500 hPa and 700 hPa, zonal and meridional wind of 850 hPa as predictors, favorable, unfavorable and continuous unfavorable days of spring sowing period in the middle and lower reaches of the Yangtze as predictors, utilizing optimal subset regression method (OSR), a model interpretation scheme of climatic conditions of sowing period prediction is established. The performance of the model interpretation scheme with different lead time are evaluated and analyzed. Meanwhile, the predictive skill of typical years with unfavorable climatic conditions is tested. Hindcast test of predictive scheme exhibits considerable overall predictive skill on both favorable and unfavorable days of spring sowing period. Predictive results of different lead time indicate that the prediction performance of unfavorable and continuous unfavorable days grows better as the lead time shortens. Moreover, hindcast result with lead time equals 0 shows that the model interpretation scheme not only simulates the annual variations well, but also illustrates certain predictive ability of decadal change of climatic conditions of spring sowing period. In the operational prediction of climatic conditions of spring sowing period, rolling forecast result of model interpretation scheme should be utilized to achieve better predictive performance. Since the model interpretation scheme does not give climatic conditions of spring sowing period directly, each variables of model output should be considered. In order to test the predictive skill of typical years with unfavorable climatic conditions, five years with typical unfavorable climatic conditions of spring sowing period (with continuous unfavorable days exceeding 10 days) are selected and verification results indicate that since the 1980s, the integrated result of scheme is approximately the same with observation, which exhibits considerable predictive skill.
-
图 5 1983—2012年长江中下游春播期连续不利日数与同期NCEP/NCAR再分析 (a) 和DERF2.0回报资料 (b) 北半球500 hPa高度场相关
Fig. 5 Correlation between continuous unfavorable days of spring sowing period in the middle and lower reaches of the Yangtze to 500 hPa geopotential height in Northern Hemisphere of NCEP/NCAR reanalysis (a) and DERF2.0 hindcast (b) from 1983 to 2012
图 6 1983—2012年春播期连续不利日数及不利日数回报检验
(a)3月11日起报连续不利日数,(b)3月16日起报连续不利日数,(c)3月21日起报连续不利日数,(d)3月11日起报不利日数,(e)3月16日起报不利日数,(f)3月21日起报不利日数
Fig. 6 Hindcast skill of continuous unfavorable days and unfavorable days of spring sowing period from 1983 to 2012
(a) continuous unfavorable days (lead time is 10 d), (b) continuous unfavorable days (lead time is 5 d), (c) continuous unfavorable days (lead time is 0), (d) unfavorable days (lead time is 10 d), (e) unfavorable days (lead time is 5 d), (f) unfavorable days (lead time is 0)
表 1 长江中下游春播期气候条件典型不利年份预测效果检验
Table 1 Predictive skill test of typical unfavorable years of spring sowing in the middle and lower reaches of the Yangtze
年份 春播型指数 连续不利日数/d 不利日数/d 连续有利日数/d 预测 实况 预测 实况 预测 实况 预测 实况 1987 -2 -2 8.9 13 10.1 13 2.6 7 1988 -1 -2 5.3 10 12.6 12 7.0 6 1991 -2 -2 9.7 15 10.7 15 7.0 6 1996 -2 -2 10.0 14 13.7 16 6.9 5 1999 -2 -2 10.4 10 10.7 12 10.3 7 -
[1] 苏广达.作物学.广州:广东高等教育出版社, 2000:72-77. [2] 郑昌玲, 宋迎波, 侯英雨, 等.2009年春季气候对农业生产的影响.中国农业气象, 2009, 30(3):469-470. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200903038.htm [3] 陈丽娟, 张培群.1951—2005年华南春播期气象条件的年代际变化.气候变化研究进展, 2006, 2(4):184-187. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200604009.htm [4] 陈晚清, 肖荣辉.长江中下游春季连阴雨问题分析.武陵学刊, 1998, 19(6):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJQX199302000.htm [5] 陈斐, 杨沈斌, 申双和, 等.长江中下游双季稻春季低温冷害的时空分布.江苏农业学报, 2013, 29(3):540-547. http://www.cnki.com.cn/Article/CJFDTOTAL-JSNB201303014.htm [6] 孙锦铨, 陈永秀.长江中下游春季连阴雨天气气候分析.气象, 1991, 17(5):29-34. doi: 10.7519/j.issn.1000-0526.1991.05.005 [7] 席林华.春季低温连阴雨天气的热带环流和总云量分布.气象, 1989, 15(8):10-15. doi: 10.7519/j.issn.1000-0526.1989.08.002 [8] 吴有训, 赵俊华, 张民蓓, 等.皖东南地区春播期连续低温阴雨天气分析.安徽农业科学, 2003, 31(4):569-570. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200304026.htm [9] 刘延英, 彭治班.连晴和连阴雨前两支气流变化的一般特点.应用气象学报, 1990, 1(3):299-304. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900344&flag=1 [10] 朱盛明, 姜翠宏.春季长江中下游连阴雨期低空西南气流与低纬风场的关系.气象科学, 1992, 12(4):362-370. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199204001.htm [11] 张清.近40年长江中下游春季低温气候特征及影响研究.灾害学, 1992, 7(3):73-76. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199203017.htm [12] 韩荣青, 陈丽娟, 李维京, 等.2—5月我国低温连阴雨和南方冷害的时空特征.应用气象学报, 2009, 20(3):312-320. doi: 10.11898/1001-7313.20090307 [13] 李麦村, 潘菊芳, 田生春, 等.春季连续低温阴雨的预报方法.北京:科学出版社, 1977. [14] 万日金, 吴国雄.江南春雨的时空分布.气象学报, 2008, 66(3):310-319. doi: 10.11676/qxxb2008.029 [15] 施宁.长江中下游春季连阴雨及厄尔尼诺年的环流背景.气象, 1990, 16(12):8-14. doi: 10.7519/j.issn.1000-0526.1990.12.002 [16] 覃志年, 况雪源, 钟利华.广西春播期降水量预报方法研究.广西气象, 2000, 21(4):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200004000.htm [17] Wiby R I, Wigley T M L.Downscaling general circulation model output:A review of methods and limitations.Prog Phys Geog, 1997, 21:530-548. https://www.researchgate.net/publication/234005950_Downscaling_General_Circulation_Model_Output_A_Review_of_Methods_and_Limitations [18] Wilby R I, Dawson C W, Barrow E M.SDSM-A decision support tool for the assessment of regional climate change impact.Environ Mod Soft, 2002, 17:145-157. doi: 10.1016/S1364-8152(01)00060-3 [19] 范丽军, 符淙斌, 陈德亮.统计降尺度法对未来区域气候变化情景预估的研究进展.地球科学进展, 2005, 20(3):320-329. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200503008.htm [20] 顾伟宗, 陈丽娟, 张培群, 等.基于月动力延伸预报最优信息的中国降水降尺度预测模型.气象学报, 2009, 67(2):280-287. doi: 10.11676/qxxb2009.028 [21] 覃志年, 陈丽娟, 唐红玉, 等.月尺度动力模式产品解释应用系统及预测技巧.应用气象学报, 2010, 21(5):614-620. doi: 10.11898/1001-7313.20100511 [22] 刘绿柳, 孙林海, 廖要明, 等.基于DERF的SD方法预测月降水和极端降水日数.应用气象学报, 2011, 22(1):77-85. doi: 10.11898/1001-7313.20110108 [23] 贾小龙, 陈丽娟, 高辉, 等.我国短期气候预测技术进展.应用气象学报, 2013, 24(6):641-655. doi: 10.11898/1001-7313.20130601 [24] 陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预报中的应用.应用气象学报, 2003, 14(6):648-655. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030682&flag=1 [25] 刘永和, 郭维栋, 冯锦明, 等.气象资料的统计降尺度方法综述.地球科学进展, 2011, 26(8):837-847. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108006.htm [26] 陈超君, 王钦.降尺度技术的应用研究进展.气象科技进展, 2014, 4(2):62-65. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201402014.htm [27] 吴统文, 宋连春, 刘向文, 等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. doi: 10.11898/1001-7313.20130503 [28] Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project.Bull Amer Meteor Soc, 1996, 77:437-470. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [29] 魏凤英.现代气候统计诊断与预测技术 (第二版).北京:气象出版社, 2008:194-201. [30] 柯宗建, 张培群, 董文杰, 等.最优子集回归法在季节气候预测中的应用.大气科学, 2009, 33(5):994-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200905012.htm [31] 顾伟宗, 陈丽娟, 李维京, 等.降尺度方法在中国不同区域夏季降水预测中的应用.气象学报, 2012, 70(2):202-212. doi: 10.11676/qxxb2012.020