Integrated Technology of Yield Dynamic Prediction of Winter Wheat in Shandong Province
-
摘要: 在新型统计检验聚类分析 (CAST) 方法对山东省冬小麦种植区进行合理分区的基础上,利用基于作物产量历史丰歉气象影响指数、关键气象因子影响指数、气候适宜度指数、WOFOST (world food study) 作物生长模型分别建立各区域冬小麦产量动态预报方法,利用这4种方法分别对2004—2011年山东省冬小麦产量进行动态预报,在分析历史预报结果平均准确率的基础上,剔除预报准确率低于90.0%的预报方法,确定每种方法的权重系数,采用加权方法建立山东省冬小麦产量动态集成预报方法。结果表明:4种单一产量预报方法在各区域各时段的预报准确率很不稳定,波动范围较大。而集成预报方法对山东省各区域冬小麦产量动态预报准确率相对于4种单一预报方法均有所提高,预报准确率普遍在95.0%以上,且其预报结果稳定性较好,变化比较平稳, 集成预报方法更适合在业务上应用。Abstract: Using winter wheat yield and growth data of 17 prefecture-level city, daily meteorological data from 1980 to 2011, and daily 20 cm depth soil moisture data of 14 representative meteorological stations from 1992 to 2011, methods for dynamic prediction of winter wheat yield are established in 4 regions of Shandong Province, considering historical meteorological influence index for bumper or poor harvest of crop yield, key meteorological factors influence index, the climatic suitability influence index and the WOFOST crop growth model, respectively. A newly developed statistical method, cluster analysis of statistical test (CAST), which divides planting areas of winter wheat in Shandong Province into four regions. These four methods are used to predict yield of winter wheat in regions of Shandong Province from 2004-2011. An integrated prediction method is established in which the weight coefficients of each method is determined based on the prediction accuracy, and the prediction method with accuracy lower than 90.0% in each period is removed.The comparison result shows the prediction accuracy in each region and period of four single yield prediction method is very unstable and has a large fluctuation range. Forecast results of the historical meteorological influence index for bumper or poor harvest of crop yield are relatively good in region of C1 and C3. The accuracy of key meteorological factor influence index in region C1 and C2 is relatively consistent, while not quite stable in region C3. The prediction accuracy of the climatic suitability influence index generally is more than 80%. And the prediction accuracy of WOFOST in four regions all reaches 90.0%, except for certain instability and fluctuation. Through integrating these methods, the accuracy in each region and each period is significantly improved, which is generally above 95.0%, and the prediction result is stable. Therefore, the integrated prediction method could overcome shortcomings of the single forecast method, and it is more suitable for application.
-
表 1 冬小麦不同生育时段气候适宜度指数与气象产量的相关系数
Table 1 Correlation coefficient of meteorological yield and climatic suitable index in different developmental stages of winter wheat
区域 播种至1月下旬 播种至2月下旬 播种至3月下旬 播种至4月下旬 播种至5月下旬 C1 0.713 0.704 0.704 0.721 0.714 C2 0.703 0.747 0.776 0.797 0.770 C3 0.716 0.736 0.737 0.765 0.781 C4 0.566 0.586 0.743 0.766 0.797 表 2 4种方法不同预报时间的权重系数
Table 2 The weight coefficient of four methods at different forecasting time
区域 预报时间 产量历史丰歉 关键气象因子 气候适宜度指数 WOFOST模型 C1 1月下旬 0.4827 0.0000 0.0000 0.5173 2月下旬 0.4803 0.0000 0.0000 0.5197 3月下旬 0.4833 0.0000 0.0000 0.5167 4月下旬 0.4832 0.0000 0.0000 0.5168 5月下旬 0.5047 0.0000 0.0000 0.4953 C2 1月下旬 0.2492 0.2422 0.2495 0.2591 2月下旬 0.3301 0.3188 0.0000 0.3510 3月下旬 0.3261 0.3279 0.0000 0.3460 4月下旬 0.3312 0.3319 0.0000 0.3369 5月下旬 0.3370 0.3338 0.0000 0.3292 C3 1月下旬 0.0000 0.3346 0.3329 0.3325 2月下旬 0.4849 0.0000 0.0000 0.5151 3月下旬 0.3353 0.0000 0.3181 0.3466 4月下旬 0.3393 0.0000 0.3286 0.3321 5月下旬 0.3351 0.0000 0.3277 0.3372 C4 1月下旬 0.3361 0.3307 0.0000 0.3332 2月下旬 0.3275 0.3363 0.0000 0.3363 3月下旬 0.0000 0.4977 0.0000 0.5023 4月下旬 0.3218 0.3437 0.0000 0.3345 5月下旬 0.3233 0.3392 0.0000 0.3375 注:以2009年为例。 表 3 不同建模年份产量动态预报模型回代检验平均准确率 (单位:%)
Table 3 Average accuracy of return test for the dynamic yield forecast model based on different years (unit:%)
预报方法 建模年份 C1区 C2区 C3区 C4区 关键气象因子 1980—2003 95.4 92.5 96.6 94.7 1980—2004 95.2 92.5 96.6 94.1 1980—2005 95.2 92.4 96.0 94.2 1980—2006 95.7 93.3 95.7 94.5 1980—2007 96.0 93.4 96.5 95.1 1980—2008 95.6 93.0 95.5 95.0 1980—2009 94.9 93.5 94.4 94.7 1980—2010 94.9 93.6 94.8 94.4 气候适宜度指数 1992—2003 98.8 97.0 97.0 97.1 1992—2004 98.4 97.0 96.6 96.9 1992—2005 97.7 96.7 96.5 95.8 1992—2006 97.3 96.4 96.1 95.5 1992—2007 97.9 96.2 96.1 95.7 1992—2008 97.1 95.8 95.6 95.8 1992—2009 96.5 95.5 95.7 95.9 WOFOST模型 1980—2003 91.2 91.6 90.8 91.9 1980—2004 91.4 92.0 92.3 90.7 1980—2005 91.6 92.2 92.4 90.6 1980—2006 91.9 92.2 91.6 92.9 1980—2007 94.2 93.5 92.9 90.9 1980—2008 92.0 92.8 92.6 91.3 1980—2009 91.6 92.9 92.8 91.8 1980—2010 93.7 93.7 92.2 91.9 注:预报为5月下旬。 表 4 2004—2011年山东冬小麦产量预报平均准确率 (单位:%)
Table 4 Average accuracy of yield forecast of winter wheat in Shandong Province from 2004 to 2011(unit:%)
区域 预报时间 产量历史丰歉 关键气象因子 气候适宜度指数 WOFOST模型 集成预报方法 C1 1月下旬 93.7 92.0 90.6 94.7 96.9 2月下旬 93.9 90.4 90.1 96.0 97.1 3月下旬 93.3 89.9 90.0 95.4 97.6 4月下旬 94.2 89.3 90.0 94.9 97.3 5月下旬 94.5 89.1 90.0 93.0 98.5 C2 1月下旬 88.2 92.9 93.4 95.4 98.2 2月下旬 86.8 93.4 92.1 96.6 97.7 3月下旬 87.3 93.8 92.5 96.6 97.5 4月下旬 86.7 93.2 92.7 95.0 96.5 5月下旬 85.8 93.4 93.1 94.4 96.6 C3 1月下旬 90.2 93.6 94.4 93.4 96.5 2月下旬 92.2 94.2 93.3 95.8 98.0 3月下旬 93.5 93.2 92.4 92.8 98.1 4月下旬 94.6 93.9 92.7 94.6 98.4 5月下旬 94.6 94.1 93.0 92.9 97.9 C4 1月下旬 85.1 93.0 90.3 92.2 95.1 2月下旬 86.4 91.3 90.3 93.6 96.2 3月下旬 86.9 91.7 90.1 93.6 95.9 4月下旬 87.0 92.1 90.7 93.3 96.3 5月下旬 85.7 92.0 91.3 94.2 96.3 -
[1] 张宇, 王石立, 王馥棠.气候变化对我国小麦发育及产量可能影响的模拟研究.应用气象学报, 2000, 11(3):264-270. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000341&flag=1 [2] 刘树泽, 张宏铭, 蓝鸿第.作物产量预报方法.北京:气象出版社, 1987:11-35. [3] 王书裕.作物产量的预报方法.气象学报, 1984, 42(3):349-355. doi: 10.11676/qxxb1984.040 [4] 王叔同, 张荣霞, 张敏.基于长时段线性影响分析的冬小麦产量预报.应用气象学报, 2000, 11(3):377-382. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000355&flag=1 [5] 李明星. 基于分布式水文模型与作物模型的西北地区冬小麦产量预报研究. 北京: 中国气象科学研究院, 2007: 5-7. [6] 刘伟昌, 陈怀亮, 余卫东, 等.基于气候适宜度指数的冬小麦动态产量预报技术研究.气象与环境科学, 2008, 31(2):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200802005.htm [7] 魏瑞江, 宋迎波, 王鑫.基于气候适宜度的玉米产量动态预报方法.应用气象学报, 2009, 20(5):622-627. doi: 10.11898/1001-7313.20090514 [8] 李曼华, 薛小萍, 李鸿怡.基于气候适宜度指数的山东省冬小麦产量动态预报.中国农学通报, 2012, 28(12):291-295. doi: 10.11924/j.issn.1000-6850.2012-0337 [9] 侯英雨, 王良宇, 毛留喜, 等.基于气候适宜度的东北地区春玉米发育期模拟模型.生态学杂志, 2012, 31(9):2431-2436. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201209039.htm [10] 代立芹, 李春强, 康熙言, 等.基于气候和土壤水分综合适宜度指数的冬小麦产量动态预报模型.中国农业气象, 2012, 33(4):519-526. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201204008.htm [11] 张建军, 马晓群, 许莹.安徽省一季稻生长气候适宜性评价指标的建立与试用.气象, 2013, 39(1):88-93. doi: 10.7522/j.issn.1000-0534.2012.00010 [12] 王建林, 赵四强.全国棉花产量预报模式.气象, 1990, 16(5):26-30. doi: 10.7519/j.issn.1000-0526.1990.05.005 [13] 王建林, 宋迎波.棉花产量动态预测方法研究.中国棉花, 2002, 29(9):5-7. http://www.cnki.com.cn/Article/CJFDTOTAL-ZMZZ200209002.htm [14] 宋迎波, 王建林, 陈晖, 等.中国油菜产量动态预报方法研究.气象, 2008, 34(3):93-99. doi: 10.7519/j.issn.1000-0526.2008.03.014 [15] 宋迎波, 王建林, 郑昌玲, 等. 美国小麦产量业务预报方法研究. 2009, 37(2): 186-189. [16] 易雪, 王建林, 宋迎波, 等.早稻产量动态集成预报方法研究.中国水稻科学, 2011, 25(3):307-313. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201103012.htm [17] 王建林, 太华杰.影响中国棉花产量丰歉的气象指标.应用气象学报, 1995, 6(增刊Ⅰ):96-101. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX5S1.013.htm [18] 刘伟昌, 张雪芬, 王世涛, 等.棉花生育期关键气象因子及单产丰歉评估指标.气象科技, 2005, 33(增刊Ⅰ):141-143. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ2005S1031.htm [19] 唐余学, 罗孳孳, 范莉, 等.基于关键气象因子的中稻单产动态预报.中国农业气象, 2011, 32(增刊Ⅰ):140-143. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY2011S1033.htm [20] 李明星, 刘建栋, 王馥棠, 等.分布式水文模型在陕西省冬小麦产量模拟中的应用.水土保持通报, 2008, 28(5):148-154. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB200805032.htm [21] Boogaard H, Wolf J, Supit I, et al.A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union.Field Crops Research, 2013 (143):130-142. http://www.academia.edu/12667815/A_regional_implementation_of_WOFOST_for_calculating_yield_gaps_of_autumn-sown_wheat_across_the_European_Union [22] 熊伟.CERES-Wheat模型在我国小麦区的应用效果及误差来源.应用气象学报, 2009, 20(1):88-94. doi: 10.11898/1001-7313.20090111 [23] Ma G N, Huang J X, Wu W B, et al.Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield.Mathematical and Computer Modeling, 2013(58):634-643. http://www.sciencedirect.com/science/article/pii/S0895717711006431 [24] 丁裕国, 梁建茵, 刘吉峰.EOF/PCA诊断气象变量场问题的新探讨.大气科学, 2005, 29(2):307-313. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200502015.htm [25] 邬定荣, 刘建栋, 刘玲, 等.基于CAST客观分类的华北平原干热风区域研究.科技导报, 2012, 30(19):19-23. doi: 10.3981/j.issn.1000-7857.2012.19.001 [26] 么枕生.用于数值分类的聚类分析.海洋与湖沼通报, 1994, 2:1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB199402000.htm [27] 邱美娟, 宋迎波, 王建林, 等.新型统计检验聚类方法在精细化农业气象产量预报中的应用.中国农业气象, 2014, 35(2):187-194. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201402011.htm [28] 邬定荣, 欧阳竹, 赵小敏, 等.作物生长模型WOFOST在华北平原的适用性研究.植物生态学报, 2003, 27(5):594-602. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200305002.htm [29] 邬定荣. 华北平原气象因子时空变异对作物产量和水分利用的影响. 北京: 中国科学院研究生院, 2006. [30] 邱美娟. 基于动力与统计相结合的精细化冬小麦产量动态预报集成技术研究. 北京: 中国气象科学研究院, 2014. [31] 易雪. 早稻产量动态预报技术研究. 南京: 南京信息工程大学, 2010. [32] 郑昌玲, 杨菲云, 王建林, 等.早稻产量动态预报模型.中国农业气象, 2007, 28(4):412-416. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200704017.htm [33] 帅细强, 陆魁东, 黄晚华.不同方法在湖南省早稻产量动态预报中的比较.应用气象学报, 2015, 26(1):103-111. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150111&flag=1 [34] 宋迎波, 王建林, 杨霏云, 等.粮食安全气象服务.北京:气象出版社, 2006:32-39.