留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高建筑对周围建筑雷击保护距离的模拟

谭涌波 陈之禄 张冬冬 师正 郭秀峰

谭涌波, 陈之禄, 张冬冬, 等. 高建筑对周围建筑雷击保护距离的模拟. 应用气象学报, 2016, 27(4): 498-505. DOI: 10.11898/1001-7313.20160413..
引用本文: 谭涌波, 陈之禄, 张冬冬, 等. 高建筑对周围建筑雷击保护距离的模拟. 应用气象学报, 2016, 27(4): 498-505. DOI: 10.11898/1001-7313.20160413.
Tan Yongbo, Chen Zhilu, Zhang Dongdong, et al. Simulation on the stroke protection distance of tall buildings to surrounding buildings. J Appl Meteor Sci, 2016, 27(4): 498-505. DOI:  10.11898/1001-7313.20160413.
Citation: Tan Yongbo, Chen Zhilu, Zhang Dongdong, et al. Simulation on the stroke protection distance of tall buildings to surrounding buildings. J Appl Meteor Sci, 2016, 27(4): 498-505. DOI:  10.11898/1001-7313.20160413.

高建筑对周围建筑雷击保护距离的模拟

DOI: 10.11898/1001-7313.20160413
资助项目: 

国家自然科学基金项目 41175003

国家重点基础研究发展计划 2014CB441403

详细信息
    通信作者:

    谭涌波, email: ybtan@ustc.edu

Simulation on the Stroke Protection Distance of Tall Buildings to Surrounding Buildings

  • 摘要: 在已有先导连接参数化方案的基础上,选取近地面层为研究区域,保持方案中其他基本参量不变,通过改变闪电的空间形态,在同一建筑分布的背景下进行多次闪电模拟。研究多个建筑之间的屏蔽作用以及建筑雷击保护距离与建筑相关特征参数之间的关系,结果表明:高建筑对矮建筑具有屏蔽作用,并存在一个临界保护距离,当高、矮建筑高度分别为190 m和165 m,宽度均为20 m时,建筑之间的距离在12 m以内,矮建筑受高建筑完全保护不遭受雷击;建筑之间的距离超过12 m,矮建筑遭雷击次数明显增多。
  • 图  1  模拟结构示意图

    Fig. 1  Sketch of simulation structure

    图  2  闪电发展形态

    (a) 随机性参数为14,(b) 随机性参数为56,(c) 随机性参数为92

    Fig. 2  Lightning progression forms

    (a) random parameter is 14, (b) random parameter is 56, (c) random parameter is 92

    图  3  电位分布图 (单位:kV)

    Fig. 3  Plot of potential distribution (unit:kV)

    图  4  矮建筑雷击次数与建筑之间距离D的关系曲线

    Fig. 4  Changes of lightning frequency of low buildings with distance between buildings

    图  5  不同高度的高建筑条件下临界保护距离SL与矮建筑高度H2的关系曲线

    Fig. 5  Changes of the critical value of protection distance SL with the height of low building H2 under conditions of different height of tall buildings

    图  6  不同高度的矮建筑条件下临界保护距离SL与高建筑高度H1的关系曲线

    Fig. 6  Changes of the critical value of protection distance SL with the height of tall building H1 under conditions of different height of low buildings

    表  1  不同高度的高建筑条件下SLH2的拟合方程中常量取值

    Table  1  Constant values of fitting equation of SL and H2 under conditions of different height of tall buildings

    H1/m a b R2
    170 209.3235 -1.4098 0.987
    190 223.5980 -1.3079 0.968
    210 307.70 -1.6137 0.966
    下载: 导出CSV

    表  2  不同高度的矮建筑条件下SLH1的拟合方程中常量取值

    Table  2  Constant values of fitting equation of SL and H1 under conditions of different height of low buildings

    H2/m a b R2
    90 -143.102 1.426 0.947
    110 -173.789 1.471 0.964
    130 -245.392 1.727 0.947
    下载: 导出CSV
  • [1] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [2] 马明, 吕伟涛, 张义军, 等.1997—2006年我国雷电灾情特征.应用气象学报, 2008, 19(4):393-400. doi:  10.11898/1001-7313.20080402
    [3] Hartono Z, Robiah I.A Method of Identifying the Lightning Strike Location on a Structure.International Conference on Electromagnetic Compatibility.Kuala Lumpur, Malaysia, 1995:112-117. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470030186.html
    [4] Hartono Z, Robiah I.The Collection Surface Concept as a Reliable Method for Predicting the Lightning Strike Location.The 25th International Conference on Lightning Protection.Rhodes, Greece, 2000:328-333. https://www.researchgate.net/publication/283692564_The_collection_surface_concept_as_a_reliable_method_for_predicting_the_lightning_strike_location
    [5] D'Alessandro F.The use of "Field Intensification Factors" in calculations for lightning protection of structures.Journal of Electrostatics, 2003, 58:17-43. doi:  10.1016/S0304-3886(02)00178-X
    [6] 邵程远. 建筑物雷击概率特性研究. 南京: 南京信息工程大学, 2011.
    [7] 耿雪莹, 张其林, 刘明远, 等.地面建筑物 (群) 对雷暴云大气电场影响的模拟研究.气象科技, 2012, 40(5):827-833. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205025.htm
    [8] 孙安然, 行鸿彦.建筑群中矮建筑的雷击概率及接闪器设计.电子测量技术, 2012, 35(6):11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201206004.htm
    [9] 建筑物防雷设计规范GB50057-2010. 北京: 中国计划出版社, 2011.
    [10] Szczerbinski M.A discussion of "Faraday cage" lightning protection and application to real building structures.Journal of Electrostatics, 2000, 48(2):145-154. doi:  10.1016/S0304-3886(99)00062-5
    [11] Baba Y, Rakov V.Electromagnetic fields at the top of a tall building associated with nearby lightning return strokes.IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3):632-643. doi:  10.1109/TEMC.2007.902402
    [12] 任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [13] 周璧华, 姜慧, 杨波, 等.地物环境对地面大气电场测量的影响.电波科学学报, 2010, 25(5):839-844. http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201005005.htm
    [14] 任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [15] 郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. doi:  10.11898/1001-7313.20130207
    [16] 谭涌波, 张冬冬, 郭秀峰, 等.轴对称建筑物形状对电场畸变影响的数值模拟.电波科学学报, 2014, 29(6):1219-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201406035.htm
    [17] Petrov N I, Waters R T.Determination of the Striking Distance of Lightning to Earthed Structures.Proceedings of the Royal Society A, 1995, 450(1940):589-601. doi:  10.1098/rspa.1995.0102
    [18] Goelian N, Lalande P, Bondiou-Clergerie A, et al.A simplified model for the simulation of positive-spark development in long air gaps.Journal of Physics D Applied Physics, 1997, 30(17):2441-2452. doi:  10.1088/0022-3727/30/17/010
    [19] Mazur V, Ruhnke L H, Bondiou-Clergerie A, et al.Computer simulation of a downward negative stepped leader and its interaction with a ground structure.J Geophys Res:Atmospheres, 2000, 105(D17):22361-22369. doi:  10.1029/2000JD900278
    [20] Mazur V, Ruhnke L H.Evaluation of the Lightning Protection System at the WSR-88D Radar Sites.National Oceanic and Atmospheric Administration Final Report, 2001:1-53. https://www.scribd.com/document/140113597/Progress-CurrentEffects-Lightning-Flashes-i2t
    [21] Becerra M, Cooray V.A simplified physical model to determine the lightning upward connecting leader inception.IEEE Transactions on Power Delivery, 2006, 21(2):897-908. doi:  10.1109/TPWRD.2005.859290
    [22] Becerra M, Cooray V.A self-consistent upward leader propagation model.Journal of Physics D Applied Physics, 2006, 39(16):3708-3715. doi:  10.1088/0022-3727/39/16/028
    [23] Mansell E R, Macgorman D R, Ziegler C L, et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model.J Geophys Res:Atmospheres, 2002, 107(D9):ACL 2-1-ACL 2-12. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.597.1655
    [24] Tan Y B, Tao S C.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning.Geophys Res Lett, 2006, 33(9):179-212. https://www.researchgate.net/publication/251429784_Fine-resolution_simulation_of_the_channel_structures_and_propagation_features_of_intracloud_lightning
    [25] 谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分枝结构的数值模拟.中国科学:D辑, 2006, 36(5):486-496. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200605010.htm
    [26] 谭涌波, 陶善昌, 祝宝友, 等.云闪放电对云内电荷和电位分布影响的数值模拟.地球物理学报, 2007, 50(4):1053-1065. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704013.htm
    [27] 谭涌波, 张冬冬, 周博文, 等.地闪近地面形态特征的数值模拟.应用气象学报, 2015, 26(2):211-220. doi:  10.11898/1001-7313.20150209
    [28] Eriksson A.The Lightning Ground Flash:An Engineering Study.Faculty of Engineering, University of Natal, Pretoria, 1979. https://www.scribd.com/document/21698628/Analysis-of-Insulator-Strings-for-69-kV-and-115-kV
    [29] Becerra M, Cooray V.On the velocity of positive connecting leaders associated with negative downward lightning leaders.Geophys Res Lett, 2008, 35(2):196-199. http://adsabs.harvard.edu/abs/2008GeoRL..35.2801B
    [30] Mousa A M.Validity of the Collection Volume Method/field Intensification Method for the Placement of Lightning Rods on Buildings.The 26th International Conference on Lightning Protection, 2002:1-6.
    [31] 郭立新, 李江挺, 韩旭彪, 等.计算物理学.西安:西安电子科技大学出版社, 2009.
    [32] 谭涌波, 师正, 王宁宁, 等.随机性与电环境特征对地闪击地点影响的数值模拟.地球物理学报, 2012, 55(11):3534-3541. doi:  10.6038/j.issn.0001-5733.2012.11.003
    [33] Becerra M, Cooray V, Hartono Z A.Identification of lightning vulnerability points on complex grounded structures.Journal of Electrostatics, 2007, 65(9):562-570. doi:  10.1016/j.elstat.2006.12.003
  • 加载中
图(6) / 表(2)
计量
  • 摘要浏览量:  3193
  • HTML全文浏览量:  1075
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-15
  • 修回日期:  2016-02-18
  • 刊出日期:  2016-07-31

目录

    /

    返回文章
    返回