Model Assessment of Dynamical Atmospheric Pollution Control Schemes Based on Sensitive Source Zone Analysis
-
摘要: 选取2014年11月6—11日一次典型污染过程,以北京城区为重点关注的目标区域,基于印痕分析技术判别对该区域影响较大的敏感源区,设计重点区域减排试验和敏感源区逐日动态减排试验,利用区域化学传输模式WRF-Chem进行模拟对比。结果显示:上述两种方案对源强较高的减排当地PM2.5浓度降低均有明显的改善作用,且在传输作用下会辐射影响到下游地区;但仅就目标区域而言,敏感源区减排方案的减排效率要远远高于重点区域减排方案。为了验证基于敏感源分析的动态减排方法的适用性,进一步开展了不同季节以及不同背景浓度的个例模拟。结果表明:基于敏感源区分析结果制定动态逐日减排措施,可降低削减成本、提高减排效率,以达到最具经济环境效益的减排效果。Abstract: In recent years, the atmospheric environment in parts of China has become significantly degraded and the need for emission controlling has become urgent. As more international events have been carried out, and more serious pollution weather happens frequently, it is important to implement air quality assurance targeted at significant events held during specific periods. A representative pollution episode, 6 November to 11 November in 2014 is chosen and simulations are carried out setting urban area of Beijing as the target region. By using the method of footprint analysis, the sensitive source zones that have the greatest impact on the air quality of the Beijing urban area are determined. Regional chemical and transportation model WRF-Chem is used to establish emission reduction tests for the focus source zones and for specific sensitive source zones within and around Beijing. Results show that two kinds of tests have significant effects on PM2.5 concentration decreasing in the emission reduction local with high intensity of emission source. Besides, the effect could also result in the decrease of pollutant concentration in downwind area under the transportation function. But only in terms of the target area, initiating a moderate emission reduction for specific sensitive source zones is more effective on the air quality of urban Beijing than initiating the same strength emission reduction for focus source zones. In certain cases when the PM2.5 direct emission reduction for the specific sensitive source zones accounts for less than 20% of focus source zones, the PM2.5 concentration reduction amount in Beijing urban area can reach the level when the sensitive source zones reduction scheme accounts for about 60%-90% of focus source zones. This ratio maintains stable through all pollution process. Thus the daily dynamical emission reduction measures developed based on the sensitive source zones analysis, can help cut the emission control costs and improve the emission reduction efficiency. In addition, results from different study cases in different pollution degree further prove the above conclusions, indicating the reliable applicability of the dynamical emission reduction scheme in the guidance of emission reduction measures. Therefore, when enacting emission reduction schemes, cooperating with surrounding provinces and cities, as well as narrowing the reduction scope to specific sensitive source zones prior to unfavorable meteorological conditions, can help reduce emission control costs and improve the efficiency and maneuverability of emission reduction schemes.
-
表 1 减排方案设计
Table 1 Scheme design of different emission-cut regions
方案名称 方案设计 分析时段 减排物种 重点区域减排(C1) 北京及周边地区减排,减排区域为37.0°~42.0°N,
113.0°~119.0°E; 减排力度:人为源排放削减
50%敏感区域减排1(C2) 根据逐日印痕分析结果,全部敏感源区人为源排
放削减50%2014-11-06—11 SO2,NOx,
PM10,PM2.5,
VOCs,NH3敏感区域减排1(C3) 根据逐日印痕分析结果,重要敏感源区人为源排
放削减50%,比较重要敏感源区削减40%,一般
敏感源区削减30%表 2 各减排方案对不同个例PM2.5浓度削减效率的对比
Table 2 Comparison of reduction efficiency of PM2.5 concentration for different scheme in three cases
统计项目 2012-08-24—26
(基础浓度:156 μg·m-3)2013-10-31—11-02
(基础浓度:207 μg·m-3)2014-11-06—11
(基础浓度:97 μg·m-3)方案C1 方案C2 比例/% 方案C1 方案C2 比例/% 方案C1 方案C2 比例/% 平均日排放削减量/(t·d-1) 2300 360 16 2325 1120 48 2650 650 25 平均浓度削减量/(μg·m-3) 29 21 72 98 84 88 36 25 70 平均浓度削减比例/% 19 14 72 47 41 88 37 26 70 -
[1] 北京市环保局.北京市环境状况公报.2006—2012. [2] 杨欣, 陈义珍, 刘厚风.北京2013年1月连续强霾过程的污染特征及成因分析.中国环境科学, 2014, 34 (2):282-288. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201402002.htm [3] Shao M, Tang X, Zhang Y, et al.City clusters in China:Air and surface water pollution.Frontiers in Ecology and the Environment, 2006, 4 (7):353-361. doi: 10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2 [4] 徐祥德, 丁国安, 卞林根.北京城市大气环境污染机理与调控原理.应用气象学报, 2006, 17 (6):815-828. doi: 10.11898/1001-7313.20060618 [5] 黄健, 吴兑, 黄敏辉.1954—2004年珠江三角洲大气能见度变化趋势.应用气象学报, 2008, 19 (1):61-70. doi: 10.11898/1001-7313.20080111 [6] 徐祥德, 周丽, 周秀骥, 等.城市环境大气重污染过程周边源影响域.中国科学:地球科学, 2004, 34 (10):958-966. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200410009.htm [7] 颜鹏, 黄健, Draxler R.周边地区对北京地面SO2影响的初步研究.应用气象学报, 2002, 13 (特刊):144-152. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2002&filename=YYQX2002S1015&v=MzA2MjNMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmWStkcUZ5L2tWN3JQUERUYWRyRzRIdE92cm85RVlZUjhlWDE= [8] 孟伟, 高庆先, 张志刚, 等.北京及周边地区大气污染数值模拟研究.环境科学研究, 2006, 19 (5):11-18. http://cdmd.cnki.com.cn/Article/CDMD-10300-2007127703.htm [9] An X, Zhu T, Wang Z, et al.A modeling analysis of a heavy air pollution episode occurred in Beijing.Atmos Chem and Phys, 2006, 12:3103-3114. [10] 马锋敏.北京及周边地区典型大气污染过程的数值模拟研究.南京:南京信息工程大学, 2007. [11] 靳军莉, 颜鹏, 马志强, 等.北京及周边地区2014年1—3月PM2.5变化特征.应用气象学报, 2014, 25 (6):690-700. doi: 10.11898/1001-7313.20140605 [12] 蒲维维, 赵秀娟, 张小玲.北京夏末秋初气象要素对PM2.5污染的影响.应用气象学报, 2011, 22 (6):716-723. doi: 10.11898/1001-7313.20110609 [13] 安峻岭, 李健, 张伟, 等.京津冀污染物跨界输送通量模拟.环境科学学报, 2012, 32 (11):2684-2692. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201211008.htm [14] 王威, 王自发, 吴其重, 等.奥运会开幕前后北京PM10输送通量变化及情景分析.气候与环境研究, 2010, 15 (5):652-661. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2010&filename=QHYH201005014&v=MTYwNzh2S05DWFNackc0SDlITXFvOUVZSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwyZlkrZHFGeS9rVWI= [15] 薛文博, 付飞, 王金南, 等.中国PM2.5跨区域传输特征数值模拟研究.中国环境科学, 2014, 34 (6):1361-1368. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2014&filename=ZGHJ201406001&v=MTkxNDBQeXJEWkxHNEg5WE1xWTlGWllSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVJMMmZZK2RxRnkva1ZyL00= [16] 程念亮, 李云婷, 张大伟, 等.2014年10月北京市4次典型空气重污染过程成因分析.环境科学研究, 2015, 28 (2):163-170. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201502001.htm [17] Streets D G, Fu J S, Jang C J, et al.Air quality during the 2008 Beijing Olympic Games.Atmos Environ, 2007, 41 (3):480-492, doi: 10.1016/j.atmosenv.2006.08.046. [18] 吴其重, 王自发, 徐文帅, 等.多模式模拟评估奥运赛事期间可吸入颗粒物减排效果.环境科学学报, 2010, 30 (9):1739-1748. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201009002.htm [19] 周颖, 程水源, 陈东升, 等.后奥运时期大气污染控制措施对北京PM10影响.北京工业大学学报, 2012, 38 (1):139-144. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2012&filename=BJGD201201028&v=MjgyMDBKeWZNYXJHNEg5UE1ybzlIYklSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVJMMmZZK2RxRnkva1ZyM04= [20] 刘俊, 安兴琴, 朱彤, 等.京津冀及周边减排对北京市PM2.5浓度下降评估研究.中国环境科学, 2014, 34 (11):2726-2733. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2014&filename=ZGHJ201411002&v=MjQ0OTk4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwyZlkrZHFGeS9rVnJ2TVB5ckRaTEc0SDlYTnJvOUZab1I= [21] 翟世贤, 安兴琴, 刘俊, 等.不同时刻污染减排对北京市PM2.5浓度的影响.中国环境科学, 2014, 34 (6):1369-1379. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2014&filename=ZGHJ201406002&v=MjcwNTFxRnkva1Y3L01QeXJEWkxHNEg5WE1xWTlGWm9SOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVJMMmZZK2Q= [22] Zhai Shixian, An Xingqin, Liu Zhao, et al.Model assessment of atmospheric pollution control schemes for critical emission regions.Atmos Environ, 2015, http://dx.doi.org/10.1016/j.atmosenv.2015.08.093. doi: 10.1016/j.atmosenv.2015.08.093 [23] Schmid H P.Footprint modeling for vegetation atmosphereexchange studies:A review and perspective.Agricultural and Forest Meteorology, 2002, 113:159-183. doi: 10.1016/S0168-1923(02)00107-7 [24] Guo X F, Cai X H.Footprint characteristics of scalar concentration in the convective boundary layer.Adv Atmos Sci, 2005, 22 (6):821-830. doi: 10.1007/BF02918682 [25] 蔡旭晖.湍流微气象观测的印痕分析方法及其应用拓展.大气科学, 2008, 31 (1):123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200801011.htm [26] 郭昱, 蔡旭晖, 刘辉志, 等.北京地区大气中尺度扩散模态和时间特征分析.北京大学学报:自然科学版, 2002, 38 (5):705-712. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200205021.htm [27] 蔡旭晖, 陈家宜.沙尘重粒子在对流边界层中的扩散模拟.北京大学学报:自然科学版, 2004, 40 (6):939-949. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200406012.htm [28] Cai Xuhui, Leclerc M Y.Forward-in-time and backward-intime dispersion in the convective boundary layer:Concentration footprint.Boundary-Layer Meteorol, 2007, 123:201-218. doi: 10.1007/s10546-006-9141-x [29] 徐敬, 马志强, 赵秀娟, 等.边界层方案对华北低层O3垂直分布模拟的影响.应用气象学报, 2015, 26 (5):567-577. doi: 10.11898/1001-7313.20150506 [30] 赵秀娟, 徐敬, 张自银, 等.北京区域环境气象数值预报系统及PM2.5预报检验.应用气象学报, 2016, 27 (2):160-172. doi: 10.11898/1001-7313.20160204 [31] Zhang Q, Streets D G, Carmichael G R, et al.Asian emissions in 2006 for the NASA INTEX-B emission.Atmos Chem Phys, 2009, 9:5131-5153. doi: 10.5194/acp-9-5131-2009