Fine Forecast of High Road Temperature Along Jiangsu Highways Based on INCA System and METRo Model
-
摘要: 使用INCA(Integrated Nowcasting through Comprehensive Analysis)多源资料融合分析和短临外推预报系统的预报结果作为气象强迫场,驱动一路面温度理论预报模型(Model of the Environment and Temperature of Roads,METRo),开展江苏省高速公路夏季路面高温预报试验,并使用公路沿线逐小时的路面温度观测资料对预报结果进行检验。结果表明:该预报方法能够较好地预报出高速公路沿线日最高路面温度的逐日变化趋势,以及日最高路面温度的大范围空间分布特征。平均日最高路面温度预报绝对偏差为4.1℃,平均相对偏差为10.8%。其中,日最高路面温度预报绝对偏差在5℃以内的站次占总数的64.5%,相对偏差在15%以内的站次占总数的74.6%,比常规业务预报方法分别提高了23.1%和25.3%。但该预报方法对较小的温度波动以及局地性较强的极端温度分布特征的预报技巧还需进一步提高。Abstract: The Integrated Nowcasting through Comprehensive Analysis (INCA) system is an observation-based analysis and forecasting system, in which measurements from automatic weather stations, radar data, satellite data, 3D fields from the operational numerical weather prediction (NWP) model and elevation data with high-resolution are incorporated. INCA system adds value to the classical NWP forecast by providing high-resolution analyses, nowcasts and improved forecasts both within and beyond the nowcasting range. A coupling of INCA system and the Environment and Temperature of Roads (METRo) Model is used to study the forecast of high road temperature during summer along highways in Jiangsu Province.Result shows that the highest road temperature forecasting is improved significantly through the coupling of the forecast with observations during the overlap period by adjusting the radiative fluxes to local conditions. The absolute error of the road temperature at 1400 BT is reduced by about 3℃ compared with results with non-coupling. The daily variation and the spatial distribution of the highest road temperature at 1400 BT can be captured by this forecasting system. The average absolute error for the daily highest road temperature is 4.1℃, and the average relative error is about 10.8%. Percentages of stations with absolute error below 5℃ is about 64.5%, and percentages of stations with relative error below 15% is about 74.6%, which is higher than that of the conventional method (a statistic road temperature forecast model driven by atmospheric forecasting from BJ-RUC) by about 23.1%, 25.3%. Analysis for the hot day shows that the level and of the highest road temperature and the location of the highest road temperature center can be reproduced well by this system. The level of the highest road temperature on more than 90% of stations is in accordance with the observation. The absolute error of the road temperature forecasting is below 5℃ for most stations. While the road temperature forecasting for the hottest points are lower than the observation. The distribution of the forecasting error of the road temperature at 1400 BT shows scattered features and there is no obvious positive (negative) error center. Besides, the forecast skill of small fluctuations of road temperature needs to be improved.The source of the road temperature forecasting errors are from both the road temperature forecast model and the numerical weather prediction products. The METRo model is also driven by the station weather observation to test which part is the main error. It estimates that about 70% of error is from the model itself, and notes that the cloud amount and surface pressure observations are from nearby weather stations.
-
Key words:
- highway;
- road temperature;
- fine forecast
-
图 7 2014年7月21-22日14:00江苏省高速公路沿线日最高路面温度空间分布(a)21日观测, (b)21日预报, (c)22日观测, (d)22日预报
Fig. 7 The spatial distribution of road temperature for 177 stations along highways in Jiangsu Province at 1400 BT 21 Jul and 1400 BT 22 Jul in 2014 (a) observation at 1400 BT 21 Jul, (b) forecast at 1400 BT 21 Jul, (c) observation at 1400 BT 22 Jul, (d) forecast at 1400 BT 22 Jul
表 1 2014年7月21日-8月21日江苏省高速公路沿线177个站14:00路面温度预报偏差统计
Table 1 Statistics of error of road temperature forecast at 1400 BT for 177 stations along highways in Jiangsu Province from 21 Jul 2014 to 21 Aug 2014
预报方案 绝对偏差 相对偏差 1℃以内 3℃以内 5℃以内 5%以内 10%以内 15%以内 WRF预报场驱动统计模型 7.5% 24.4% 41.4% 18.8% 35.6% 49.3% INCA预报场驱动METRo模型 14.7% 41.3% 64.5% 37.2% 61.2% 74.6% 观测驱动METRo模型 17.2% 49.3% 78.1% 42.2% 76.7% 88.3% 注:表中数字表示在绝对偏差或相对偏差范围内的站次比例。 -
[1] 朱承瑛.高速公路路面温度模型及其预报系统的研究.南京:南京信息工程大学, 2008. [2] 李蕊.路面温度和结冰预报模式研制及应用.南京:南京信息工程大学, 2010. [3] 田华, 吴昊, 赵琳娜, 等.沪宁高速公路路面温度变化特征及统计模型.应用气象学报, 2009, 20(6):737-744. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090612&flag=1 [4] 武辉芹, 马翠平, 杨荣芳, 等.河北省高速公路路面温度变化特征及预报模型.干旱气象, 2014, 32(4):665-676. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201404025.htm [5] 刘熙明, 喻迎春, 雷桂莲, 等.应用辐射平衡原理计算夏季水泥路面温度.应用气象学报, 2004, 15(5):623-628. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040575&flag=1 [6] 秦健, 孙立军.国外沥青路面温度预估方法综述.中外公路, 2005, 25(6):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200506006.htm [7] 孟春雷, 张朝林.路面气象数值预报模型及性能检验.应用气象学报, 2012, 23(4):451-458. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120408&flag=1 [8] 颜琼丹, 苏洵, 韦庆华, 等.一种基于多种资料融合技术的短时临近预报方法.气象研究与应用, 2010, 31(4):49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX201004013.htm [9] Meirold-Mautner I, Wang Y, Kann A, et al.Integrated nowcasting system for the Central European Area:INCA-CE, data and mobility.Adv Intell Soft Comput, 2010, 81:107-114. [10] Crevie L P, Delage Y.METRo:A new model for road-condition forecasting in Canada.J Applied Meteor, 2001, 40(11):2026-2037. doi: 10.1175/1520-0450(2001)040<2026:MANMFR>2.0.CO;2 [11] Kann A, Pistotink G, Bica B.INCA-CE:A Central European initiative in nowcasting servere weather and its applications.Adv Sci Res, 2012, 8:67-75. doi: 10.5194/asr-8-67-2012 [12] Kann A, Kršmanc R, HabrovskÝ R, et al.High-resolution nowcasting and its application in road maintenance:experiences from the INCA Central European area project.Int Intelligent Transport Systems, 2015, 9:539-546. doi: 10.1049/iet-its.2014.0102 [13] Bouilloud L, Martin E, Habets F, et al.Road surface condition forecasting in France.J Appl Meteor Climatol, 2009:48:2513-2527. doi: 10.1175/2009JAMC1900.1 [14] 陈兴旺.自动气象站数据质量控制方法及误差分析.科技咨询, 2011, 23:129-131. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201123108.htm [15] 魏东, 尤凤春, 杨波, 等.北京快速更新循环预报系统(BJ-RUC)要素预报质量评估.气象, 2011, 37(12):1489-1497. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201112004.htm [16] 孟春雷, 刘长友.北京地区高速公路夏季道面高温灾害预报研究.防灾科技学院学报, 2009, 11(3):26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-FZJS200903007.htm [17] 石岚, 徐丽娜, 郝玉珠, 等.BJ-RUC在内蒙古某风电场的风速预报检验分析.干旱区地理, 2015, 38(3):510-516. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201503011.htm [18] 范水勇, 陈敏, 仲跻芹, 等.北京地区高分辨率快速循环同化预报系统性能检验和评估.暴雨灾害, 2009, 28(2):119-125. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200902005.htm [19] QX/T 111-2010.高速公路交通气象条件等级.2010. [20] 冯涛, 李迅, 丁德平.高速公路道面温度预报.公路交通科技, 2012, 29(5):19-29. http://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201205003.htm [21] 朱承瑛, 谢志清, 严明良, 等.高速公路路面温度极值预报模型研究.气象科学, 2009, 29(5):645-650. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200905013.htm [22] Grose A, Smith E A, Chung H S, et al.Possibilities and limitations for quantitative precipitation forecast using nowcasting methogs with infrared geosynchronous satellite imagery.J Appl Meteor, 2002, 41:763-785. doi: 10.1175/1520-0450(2002)041<0763:PALFQP>2.0.CO;2 [23] Haiden T, Kann A, Pistotnik G, et al.Integrated Nowcasting through Comprehensive Analysis (INCA) System Description.Zamg Report, 2010:39-42. [24] 陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展, 应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040693&flag=1 [25] 陈明轩, 王迎春, 俞小鼎.交叉相关外推算法的改进及其在对流临近预报中的应用.应用气象学报, 2007, 18(5):690-701. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200705105&flag=1 [26] 陈明轩, 高峰, 孔荣, 等.自动临近预报系统及其在北京奥运期间的应用.应用气象学报, 2010, 21(4):395-404. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100402&flag=1